Почему зимой магнитятся волосы, и как это устранить

Почему зимой магнитятся волосы, и как это устранить. Причина магнитящихся волос может крыться в том числе и в расчёске. Источник изображения: dzen.ru. Фото.

Причина магнитящихся волос может крыться в том числе и в расчёске. Источник изображения: dzen.ru

Все в большей или меньшей мере сталкивались с магнитящимися волосами: и взрослые, и дети, и женщины, и мужчины. Чаще всего волосы магнитятся зимой, когда нам приходится сталкиваться с тёплыми вещами, особенно забавно выглядит снятие шапки или платка с головы — ты просто становишься одуваном. Кто-то не придаёт этому значение, кто-то пытается бороться с эффектом одувана, а ведь магнитящиеся волосы являются своего рода сигналом о проблемах с волосами.

Статическое электричество, и как магнитятся волосы

Всем известно, что волосы и вещи магнитятся из-за статического электричества. Но как и почему?

Электричество — неотъемлемая часть нашей жизни. Все приборы, делающие нашу жизнь комфортней, питаются электрическим током, который течёт к нам из розетки по проводам.

Статическое электричество, и как магнитятся волосы. Статическое электричество — это скрытый вид тока, проявляется в накоплении электрического заряда на поверхностях. Источник изображения: avatars.dzeninfra.ru. Фото.

Статическое электричество — это скрытый вид тока, проявляется в накоплении электрического заряда на поверхностях. Источник изображения: avatars.dzeninfra.ru

Но электричество может не только течь, но и стоять на месте — это и есть то самое статическое электричество. Вы могли с ним столкнуться не только при расчесывании, но и когда ударяло током при касании, например к дверной ручке, при поглаживании любимого котика, при снятии свитера или даже при касании к другому человеку. А вспомните фокус с воздушным шариком, потёртым о волосы, наверно всем показывали его в детстве.

Статическое электричество, и как магнитятся волосы. Трение и статическое электричество в действии. Источник изображения: tudiousguy.com. Фото.

Трение и статическое электричество в действии. Источник изображения: tudiousguy.com

На самом деле это не фокус, это физика. Всё состоит из атомов, а атомы из ядра и электронов. Электроны “очень непоседливы” и “перебегают” с одного атома на другой, тем самым меняя заряд атомов и, соответственно, предметов с нейтрального на отрицательно или положительно заряженный.

Может быть интересно: На Марсе есть электричество, но откуда оно берется?

Когда волосы соприкасаются с другими поверхностями, например, расческой, головным убором или одеждой, они теряют электроны и приобретают положительный заряд. Получается, что каждый волосок становится положительно заряженным, а одноименно заряженные объекты отталкиваются друг от друга.

Статическое электричество, и как магнитятся волосы. Игры со статическим электричеством особо забавляют детей. Источник изображения: static.wixstatic.com. Фото.

Игры со статическим электричеством особо забавляют детей. Источник изображения: static.wixstatic.com

Вот отсюда и одуван на голове. Но возникают следующие вопросы: от чего конкретно электризуются волосы и как от этого избавиться?

Как быстро избавиться от электризации волос

Есть несколько лайфхаков, которые помогут быстро привести в порядок наэлектризованные волоски:

  1. Намочите ладонь, проведите ею по волосам.
  2. Держите при себе спрей с несмываемым уходом, например, экспресс-кондиционер.

Обязательно посети наши каналы Дзен и Telegram, здесь ждут самые интересные новости из мира науки и не только!

Эти способы помогут избавиться от “симптомов”, но проблема кроется гораздо глубже.

Почему магнитятся волосы

Глобально существует два основных провокатора этого явления.

Сухость волос зимой

Статическое напряжение в волосах усиливается осенью и зимой, во время ощутимых перепадов температуры между помещением и улицей. Холод и ветер ослабляют и истончают волосы, плюсом к этому пересушенный отоплением и обогревателями воздух помещений — в результате волосы теряют влагу и становятся обезвоженными, сухими, пористыми и ломкими (чем ещё грозят такие перепады температур и сухость воздуха — читай здесь). Всё это создаёт идеальные условия для возникновения магнетизма: волосы начинают легко электризоваться и пушиться.

Сухость волос зимой. Значительно сушит волосы использование фена, плойки и других средств для укладки. Источник изображения: www.bravotv.com. Фото.

Значительно сушит волосы использование фена, плойки и других средств для укладки. Источник изображения: www.bravotv.com

Магнититься могут и сухие и жирные волосы, но в большей степени этому подвержены ослабленные и хрупкие локоны. Потому магнетизм больше характерен для свежевымытых волос. На второй и третий день после мытья сальные железы уже успевают покрыть волосы защитным слоем, и те становятся более устойчивы к намагничиванию.

Статическое электричество в волосах

Волосы постоянно трутся о головной убор, тёплый свитер и друг о друга — и возникает эффект как от трения о воздушный шарик. Когда вы снимаете шапку, намагниченные волосы сразу устремляются во все стороны. А, как мы выяснили раньше, сухие обезвоженные волосы особо легко заряжаются электричеством, поэтому им уж точно не избежать эффекта одувана.

Статическое электричество в волосах. Расчёска из синтетических материалов может также повысить «пушистость» вашей причёски. Источник изображения: dzen.ru. Фото.

Расчёска из синтетических материалов может также повысить «пушистость» вашей причёски. Источник изображения: dzen.ru

«Волосы электризуются при повреждении, когда чешуйки кутикулы неплотно прилегают друг к другу, из-за чего в пустотах скапливается заряд — обычно при ношении головных уборов или использовании расчесок. Этому подвержены сухие, поврежденные, окрашенные волосы» — объясняет эксперт skin.ru, трихолог Мария Невская.

Кутикула волос — это наружный слой, который состоит из плоских ороговевших клеток, пропитанных кератином. Они располагаются, перекрывая друг друга, подобно черепице крыши.

Магнитятся волосы — что делать?

Получается, первопричина, что наши волосы сильно и легко магнитятся кроется в плохом состоянии волос, а значит нужно это состояние изменить. Как? Подобрать правильный уход за ними и применять его в достаточном количестве. Для восстановления и тотальной ликвидации “магнитной бури” в волосах может понадобиться время.

Магнитятся волосы — что делать? На состоянии волос сказывается и ваше питание. Источник изображения: aljoumhouria.com. Фото.

На состоянии волос сказывается и ваше питание. Источник изображения: aljoumhouria.com

Первое и главное, что нужно сделать — это пересмотреть свой повседневный уход и добавить больше увлажняющих и питательных средств: бальзамов, кондиционеров, масок, несмываемых спреев и так далее. Они помогут восстановить поврежденные участки волосков и сделать локоны менее пористыми и более увлажненными, благодаря чему волосы будут не так сильно магнититься. Да, именно “не так сильно”, ведь эффект от трения никто не отменял.

Будет полезно: Как правильно сушить волосы, чтобы не превратить их в солому

Помимо этого, мастера бьюти-индустрии советуют мыть голову тёплой водой, а не горячей, заменить синтетическую шапку на шапку из натуральных материалов, избавиться от пластиковой расчёски, либо заменить её на щетку со специальным антистатическим покрытием, реже использовать приборы для горячей укладки либо пользоваться ими на низких температурных режимах, поставить увлажнитель воздуха.

Почему язык прилипает к столбу на морозе?

Почему язык прилипает к столбу на морозе? Если вы прилипли языком к столбу — главное, не паниковать. Источник изображения: imdb.com. Фото.

Если вы прилипли языком к столбу — главное, не паниковать. Источник изображения: imdb.com

Наверное, в детстве каждый из нас пытался лизнуть металлический столб на морозе. Мы понимали, что это может привести к неприятным последствиям — язык прилипнет к металлу, и отдирать его будет очень трудно и больно. Но даже после первой неудачи некоторые из нас снова и снова повторяли этот эксперимент, надеясь, что в этот раз все обойдется. Мы с самого детства прекрасно знаем, что в морозные дни язык прилипает к металлу. Но задумывались ли вы, почему так происходит? Пришло время раскрыть эту тайну с научной точки зрения.

Почему язык прилипает к металлу

Причина того, почему зимой нельзя лизать столбы, очень проста. И объяснить ее можно простыми словами за пару минут.

Когда на улице сильный мороз, металл остывает до температуры ниже нуля, что делает его ледяным на ощупь. Если в этот момент прикоснуться к нему языком, то влага на его поверхности — наша слюна — моментально замерзает, превращаясь в лед. Этот лед крепко соединяет язык с металлом и, по сути, «приклеивает» его.

Почему язык прилипает к металлу. Между языком и металлом образуется лед, который действует как природный клей. Источник изображения: goodhouse.ru. Фото.

Между языком и металлом образуется лед, который действует как природный клей. Источник изображения: goodhouse.ru

Получается так, что образовавшийся лед действует как природный клей. Попытка резко оторвать язык может оказаться болезненной и даже травмоопасной, так как часть кожи может остаться на металле. Если сделать это резко, может даже пойти кровь. Поэтому лучше держаться подальше от морозных металлических поверхностей, чтобы не испытать это на себе.

Как отлепить язык от столба

Но что же делать, если язык все-таки прилип к столбу? Взрослые люди с трезвой головой такой эксперимент уже проделывать не будут. А вот любопытные дети — запросто. И всем нужно знать, как их спасти от этой смешной неприятности.

Если язык человека прилип к холодному металлу, ему очень важно сохранять спокойствие и не делать резких движений. Резкие рывки могут повредить кожу и, как было отмечено выше, из-за этого может пойти кровь.

Как отлепить язык от столба. Сохранять спокойствие важно в любой ситуации. Источник изображения: istockphoto.com. Фото.

Сохранять спокойствие важно в любой ситуации. Источник изображения: istockphoto.com

Самый эффективный способ освободить язык — это добавить тепла. Чтобы спасти человека, необходимо найти теплую (но ни в коем случае не горячую!) воду и аккуратно полить ею место, где язык прилип к металлу. Теплая вода поможет растопить лед, и язык легко отделится от поверхности.

Если под рукой нет теплой воды, человек может попробовать согреть металл своим дыханием. Нужно медленно и осторожно дышать на прилипшее место — тепло дыхания постепенно растопит лед, и человек сможет освободиться без боли.

Читайте также: Где мухи и комары прячутся зимой

Почему язык липнет только к металлу

На морозе язык прилипает только к металлу. Если лизнуть что-то из пластика и дерева, ничего страшного не произойдет.

На морозе язык прилипает именно к металлу из-за его высокой теплопроводности. Когда человек касается к холодному металлу языком, он быстро отбирает тепло с его поверхности, мгновенно охлаждая ее. В результате влага на языке замерзает прямо на месте контакта, образуя слой льда, который и «приклеивает» язык к металлу.

Почему язык липнет только к металлу. К счастью, прилипнуть языком к пластику или дереву невозможно. Источник изображения: wallhere.com. Фото.

К счастью, прилипнуть языком к пластику или дереву невозможно. Источник изображения: wallhere.com

С другими материалами, такими как пластик или дерево, все происходит иначе. У них низкая теплопроводность, и они не отбирают тепло от языка так быстро, поэтому вода на его поверхности не успевает замерзнуть.

Итак, теперь мы знаем, почему язык прилипает к металлу на морозе и как безопасно освободиться в такой ситуации. На нашем сайте вы найдете еще много материалов, которые будут полезны зимой!

Если вы все еще не подписаны на наш Telegram-канал, самое время это сделать. Там открыты комментарии!

Например, прямо сейчас вы можете узнать, какие вещи нельзя оставлять в машине в морозные дни. Также у нас есть статья про то, как завести автомобиль в минусовую температуру и что делать, чтобы очки не запотевали на холоде. Обо всем этом должен знать каждый!

Что будет, если выстрелить из пистолета в открытом космосе

Что будет, если выстрелить из пистолета в открытом космосе. Пистолет в космосе — все такое же опасное оружие, как и на Земле. Фото.

Пистолет в космосе — все такое же опасное оружие, как и на Земле

В каждый свой полет советские космонавты брали с собой необычное оружие — охотничий пистолет ТП-82. Он был предназначен для того, чтобы космические путешественники могли защитить себя в случае приземления в безлюдных местах. Например, благодаря пистолету они были способны отпугнуть диких животных или даже спастись от преступников. Также при помощи этого инструмента можно было разжечь костер, подавать сигналы о помощи и даже рубить дрова — поистине многофункциональный инструмент! А как вы думаете, могли ли космонавты выстрелить из пистолета прямо в космосе?

Использование оружия в космосе

Для некоторых людей это будет большим открытием, но да, стрелять из пистолета в космосе действительно возможно! Это подтвердили специалисты, с которыми связались авторы сайта Live Science. В космическом вакууме нет кислорода для горения огня, но патронам он и не нужен. Современные боеприпасы содержат собственный окислитель, благодаря которому происходит взрыв пороха и вылетает свинцовая пуля — и это работает где угодно, даже в открытом космосе.

Использование оружия в космосе. Оружие советских космонавтов — пистолет ТП-82. Источник изображения: fishki.net. Фото.

Оружие советских космонавтов — пистолет ТП-82. Источник изображения: fishki.net

Единственное, что будет отличаться, — это след от выстрела. На Земле дым от пороха образует привычный струйный след, а вот в космосе он будет расходиться в форме шара, медленно расширяясь от ствола.

Как ведет себя пуля в космосе

Стрелять в космосе можно. А что же произойдет с человеком и пулей после выстрела?

Как только пуля покинет ствол, по третьему закону Ньютона человек почувствует обратное воздействие — сила, с которой пуля движется вперед, отбросит его тело назад. Поскольку масса человека намного больше массы пули, его скорость будет небольшой, буквально несколько сантиметров в секунду. Но в космосе нет сопротивления воздуха, поэтом человек будет лететь назад бесконечно.

Как ведет себя пуля в космосе. Летящий назад космонавт не остановится до тех пор, пока во что-нибудь не врежется. Источник изображения: Live Science. Фото.

Летящий назад космонавт не остановится до тех пор, пока во что-нибудь не врежется. Источник изображения: Live Science

Пуля, выпущенная в космосе, тоже будет лететь вперед бесконечно, потому что вокруг нее почти нет материи, которая могла бы ее замедлить. Кроме того, сама Вселенная постоянно расширяется, и объекты в космосе отдаляются друг от друга все быстрее. Это значит, что все, что находится далеко от пули, будет от нее только удаляться — пуля никогда не догонит эти объекты.

Ученые подсчитали, что пуля сможет «настичь» только отдельные атомы, которые находятся относительно близко — на расстоянии до 40–50 тысяч световых лет. Все, что дальше, просто будет уноситься прочь с той же скоростью, с какой летит пуля, или даже быстрее.

Читайте также: Почему все объекты в космосе находятся в движении

В космосе можно выстрелить себе в спину

Удивительно, но теоретически, в космосе человек может выстрелить себе в спину.

Такое может произойти, если он находится на орбите планеты и производит выстрел строго горизонтально. В таком случае, пуля может начать двигаться по кругу, следуя за изгибом планеты, и вернуться обратно к человеку.

В космосе можно выстрелить себе в спину. Исходя из всего этого можно сделать вывод, что стрелять в космосе очень опасно. Источник изображения: space.com. Фото.

Исходя из всего этого можно сделать вывод, что стрелять в космосе очень опасно. Источник изображения: space.com

На Луне это может произойти с особенно высокой вероятностью: если выстрелить вдоль горизонта с вершины высокой горы, пуля сделает полный круг и вернется к человеку. Если человек будет стоять высоко, пуля точно не врежется в многочисленные неровности земного спутника.

Вам будет интересно: Каким было самое первое блюдо, которое съел Юрий Гагарин в космосе

Что будет если выстрелить в планету

Если выстрелить в сторону такой огромной планеты, как Юпитер, то даже не нужно тщательно прицеливаться. Мощное гравитационное поле Юпитера притянет пулю — как только пуля окажется в зоне притяжения планеты, она начнет двигаться по искривленной траектории, направляясь к поверхности.

Что будет если выстрелить в планету. Юпитер — гигантская планета Солнечной системы. Источник изображения: stock.adobe.com. Фото.

Юпитер — гигантская планета Солнечной системы. Источник изображения: stock.adobe.com

По мере приближения к Юпитеру скорость пули будет стремительно расти. Если она летит прямо к планете, то под действием гравитации может достичь впечатляющих 60 километров в секунду к моменту пересечения границ газового гиганта.

Обязательно подпишитесь на наш Дзен-канал. Так вы не пропустите ничего интересного!

Если в космосе работает оружие, значит, в будущем там могут совершаться преступления. О том, как полиция будет их расследовать, читайте в этом материале.

Почему невозможно создать вечный двигатель

Почему невозможно создать вечный двигатель. Создать вечный двигатель пытались многие ученые, но сделать это никому не удастся. Источник изображения: million-wallpapers.ru. Фото.

Создать вечный двигатель пытались многие ученые, но сделать это никому не удастся. Источник изображения: million-wallpapers.ru

Если бы ученым удалось создать вечный двигатель, наша жизнь превратилась бы в мечту. Благодаря ему, автомобили бы не нуждались в бензине и могли ездить бесконечно. Более того, нам не пришлось бы платить за электричество, потому что вечный двигатель легко бы мог его вырабатывать. Попытки создать вечный двигатель принимались много раз, но сделать это все еще никому не удалось. И это вряд ли у кого-нибудь получится, потому что ученые уверены, что вечный двигатель — это невозможное изобретение. Интересно, почему?

Кто пытался создать вечный двигатель

Идея создания вечного двигателя, также известного как perpetuum mobile, имеет очень древние корни. Первые попытки создать такое устройство относятся к эпохе Средневековья, когда энтузиасты стремились найти способ обмануть природу и добиться бесконечной работы механизмов.

Самым известным человеком, который пытался создать вечный двигатель, считается итальянский изобретатель Леонардо да Винчи. Среди его многочисленных записей можно найти схемы различных устройств — он считается создателем первого парашюта, водолазного костюма и многих других изобретений. Также известно, что он создавал духи, причем далеко не самые лучшие. Несмотря на свой талант, даже он пришел к выводу, что вечный двигатель невозможен из-за законов физики.

Кто пытался создать вечный двигатель. Даже Леонардо да Винчи пришел к выводу, что создать вечный двигатель невозможно. Источник изображения: montenapodaily.com. Фото.

Даже Леонардо да Винчи пришел к выводу, что создать вечный двигатель невозможно. Источник изображения: montenapodaily.com

Также стоит упомянуть Иоганна Бесслера, немецкого изобретателя 18 века, который утверждал, что ему удалось создать вечный двигатель. Он демонстрировал свои устройства, но всегда скрывал их принцип работы. После его смерти тайна осталась нераскрытой но, скорее всего, вечный двигатель он создать так и не смог.

Читайте также: 5 ученых изменивших мир, о которых мы редко вспоминаем

Почему вечный двигатель все еще не создан

Создание вечного двигателя, к сожалению, остается лишь мечтой, и на это есть серьезные причины, которые кроются в законах физики. Хотя некоторые изобретения могут казаться работающими на принципах вечного движения, на самом деле они, как правило, используют скрытые источники энергии.

Первый закон, из-за которого невозможно создать вечный двигатель, это закон сохранения энергии. Он гласит, что энергия не может возникнуть из ничего или исчезнуть в воздухе. Это означает, что любая машина, включая вечный двигатель, нуждается в источнике энергии, и эта энергия непременно будет расходоваться. Если бы двигатель работал бесконечно, он бы нарушал этот закон.

Почему вечный двигатель все еще не создан. Примерный внешний вид гипотетического вечного двигателя. Источник изображения: dzen.ru. Фото.

Примерный внешний вид гипотетического вечного двигателя. Источник изображения: dzen.ru

Второй закон, который не дает ученым создать вечный двигатель, это закон термодинамики. Он утверждает, что в любом механизме часть энергии всегда теряется в виде тепла. Это приводит к тому, что со временем работа двигателя становится менее эффективной, и он в конечном итоге останавливается. Вечный двигатель не смог бы избежать этих потерь, что делает его создание невозможным в реальном мире.

Идея вечного двигателя возможна только в том случае, если найти вещество, которое производит больше энергии, чем потребляет. Некоторые изобретатели надеялись, что радиоактивные материалы смогут решить эту проблему, но их энергия тоже конечна. Поэтому, несмотря на многочисленные попытки, создание вечного двигателя — это что-то из области научной фантастики.

Почему вечный двигатель все еще не создан. Все варианты вечного двигателя в конечном итоге останавливаются. Источник изображения: yaplakal.com. Фото.

Все варианты вечного двигателя в конечном итоге останавливаются. Источник изображения: yaplakal.com

Некоторые ученые пытались создать вечный двигатель, используя магниты. Эта идея кажется простой и гениальной, но есть одно важное «но». Даже самый мощный магнит не способен бесконечно производить энергию. Со временем его магнитные свойства ослабевают, и двигатель останавливается.

Как бы изменился мир, в случае изобретения вечного двигателя? Своими фантазиями делитесь в нашем Telegram-чате!

Если вам интересно узнать о других теоретических версиях вечного двигателя, рекомендуем прочитать нашу статью «Как работает «вечный двигатель» и примеры его конструкции».

Нобелевская премия 2024: от нейросетей до истории и экономики

Нобелевская премия 2024: от нейросетей до истории и экономики. Рассказываем, кто удостоился премии за выдающийся вклад в науку и развитие человечества в 2024 году. Изображение: entechonline.com. Фото.

Рассказываем, кто удостоился премии за выдающийся вклад в науку и развитие человечества в 2024 году. Изображение: entechonline.com

Нобелевская неделя 2024 года стартовала 7 октября. Первыми лауреатами стали американские ученые, удостоившиеся премии в категории «Физиология или медицина» за работу по открытию микроРНК. В понедельник, 14 октября, премии удостоились сразу трое экономистов, которые объяснили, почему одни страны бедные а другие богатые. Все победители получат медаль, именной диплом и денежное вознаграждение в размере около 1,1 миллиона долларов. Напомним, что премия была учреждена Альфредом Нобелем в 1901 году, а ее лауреатами ранее стали такие выдающиеся ученые, как Альберт Эйнштейн, Мария Кюри и преподобный Мартин Лютер Кинг-младший. Одна из наиболее престижных международных наград в мире, согласно завещанию шведского химика и изобретателя динамита, ежегодно присуждается за выдающиеся достижения в различных областях науки: химии, физике, физиологии или медицине, экономике, общественной деятельности (премия мира) и литературе.

Главная научная премия мира

История Нобелевской премии началась по воле одного человека – шведского химика, изобретателя и промышленника Альфреда Нобеля (1833–1896). Он прославился изобретением динамита и накопил значительное состояние, использовать которое завещал для награждения тех, кто принес наибольшую пользу человечеству. Начиная с 1901 года Шведская королевская академия наук присуждает премии по физике и химии. Нобелевская ассамблея Каролинского института вручает награды по физиологии или медицине, Шведская академия — по литературе, Норвежский Нобелевский комитет — Премию мира, а Банк Швеции с 1968 года – премии по экономике.

Церемония награждения ежегодно проходит 10 декабря в Стокгольме (для всех категорий, кроме Премии мира) и Осло (для Премии мира). В прошлом году победителями премии по физике стали Пьер Агостини, Ференц Краус и Анн Л’Юилье, за экспериментальные методы создания аттосекундных световых импульсов (для исследования динамики электронов в материи).

Главная научная премия мира. Нобелевская премия – одна из самых выдающихся наград в истории. Изображение: i.guim.co.uk. Фото.

Нобелевская премия – одна из самых выдающихся наград в истории. Изображение: i.guim.co.uk

Химики Мунги Г. Бауэнди, Луис Э. Брюс и Алексей Екимов удостоились награды за открытие и синтез квантовых точек. Открытия Каталин Карико и Дрю Вайсман позволили разработать эффективные мРНК-вакцины против COVID-19, за что Нобелевский комитет присудил им награду в области физиологии и медицины.

Не пропустите: История одной премии – хаос, климатические модели и сложные системы

Все лауреаты Нобелевской премии становятся частью истории науки и культуры. Премия, однако, не присуждается посмертно, за исключением случаев, когда лауреат умирает после объявления о награде. В 2023 году размер денежного вознаграждения составил 11 миллионов шведских крон для каждой категории. Подробнее о лауреатах Нобелевской премии 2023 года можно прочитать здесь, не пропустите!

Физиология или медицина

Лауреатами премии в области физиологии или медицины в 2024 году стали Виктор Амброс и Гэри Рувкун за открытие микроРНК – крошечных биологическиз молекул, которые сообщают клеткам человеческого организма, как себя вести, путем «включения» и «выключения» определенных генов.

Виктор Амброс, профессор молекулярной медицины и заведующий кафедрой естественных наук Массачусетского университета (США), опубликовал свою работу в 1993 году, но лишь в 2024 удостоился за нее Нобелевской премии. Тогда, более 30 лет назад, он изучал мутации в организме маленького круглого червя C.elegans в попытках понять, каким образом клетки получают нужные инструкции от ДНК в процессе своего развития.

Физиология или медицина. Нобелевская премия 2024 года по физиологии и медицине присуждена Виктору Эмбросу и Гэри Равкану за открытие молекул микроРНК. Изображение: Niklas Elmehed, Nobel Prize Outreach. Фото.

Нобелевская премия 2024 года по физиологии и медицине присуждена Виктору Эмбросу и Гэри Равкану за открытие молекул микроРНК. Изображение: Niklas Elmehed, Nobel Prize Outreach

Годы исследований показали, что за процессом, посредством которого гены «включаются» и «выключаются» в определенных клетках стоит микроРНК – новое измерение в регуляции генов. Открытие позволяет понять, какое влияние микроРНК оказывает на развитие заболеваний.
Отметим, что микроРНК, как и многие другие процессы, могут идти неправильно и связаны с такими заболеваниями, как болезни Альцгеймера и Паркинсона, почечная недостаточность и рак.

Читайте также: Употребление алкоголя связали с шестью видами рака

Безусловно, лауреаты премии по физиологии и медицине 2024 года едва ли впечатляют широкую публику. Тем не менее, их открытие имеет огромное значение в нашем понимании возникновения и лечения генетических и онкологических заболеваний – настоящего бича современности.

Физика

Одной из самых интересных и громких наград уходящего года стала Нобелевская премия по физике. Дело в том, что ее удостоились самые настоящие пионеры искусственного интеллекта – Джон Хопфилд и Джеффри Хинтон – они разработали инструменты, которые легли в основу современного машинного обучения. Последнее, напомним, позволяет машинам находить и распознавать закономерности в чрезвычайно больших массивах данных.

Канадец британского происхождения Джеффри Хинтон также известен как «крестный отец искусственного интеллекта» – метод, позволяющий автономно находить свойства в данных и таким образом идентифицировать определенные элементы на изображениях – его заслуга.

Эти искусственные нейронные сети использовались для продвижения исследований в таких разнообразных областях физики, как физика элементарных частиц, материаловедение и астрофизика. Они также стали частью нашей повседневной жизни, например, при распознавании лиц и языковом переводе, – объяснил на пресс-конференции Эллен Мун, председатель Нобелевского комитета по физике.

Физика. Джон Хопфилд и Джеффри Хинтон. Изображение: The Royal Swedish Academy of Sciences. Фото.

Джон Хопфилд и Джеффри Хинтон. Изображение: The Royal Swedish Academy of Sciences

Представители Нобелевского комитета также отметили, что мощный технологический прогресс сопряжен с рисками, так как быстрое развитие ИИ вызывает серьезные опасения по поводу будущего человечества. Интересно, что сам Хинтон неоднократно говорил об опасностях искусственного интеллекта. На Нобелевской премии ученый и вовсе заявил, что людям следует беспокоиться о ряде возможных негативных последствий, в частности, выхода ИИ из под контроля.

Это интересно: Как нейросети притворяются всезнайками и что с этим делать?

Его коллега Джон Хопфилд, почетный профессор Принстонского университета, стал старейшим лауретом Нобелевской премии (ему 91 год). В 1982 году он изобрел ассоциативную нейронную сеть, способную сохранять и восстанавливать изображения и другие типы структур в данных.

Химия

Одну из наиболее интересных наград в этом году присудили Дэвиду Бейкеру, Демису Хассабису и Джону М. Джамперза за «взлом кода удивительных структур белков». Это означает, что ученые использовали машинное обучение для решения одной из самых сложных задач биологии: прогнозирования трехмерной формы белков и их проектирования с нуля.

Отметим, что большинство предыдущих Нобелевских премий по химии присуждались ученым из академических кругов. Многие лауреаты впоследствии основали компании–стартапы для дальнейшего расширения и коммерциализации своих новаторских разработок, например, технологии редактирования генов CRISPR и квантовых точек (хотя исследования от начала и до конца проводились не в коммерческой сфере).

Химия. Лауреаты Нобелевской премии по химии 2024 года: Дэвид Бейкер, Демис Хассабис и Джон М. Джампер. Изображение: Nobel Prize Outreach. Фото.

Лауреаты Нобелевской премии по химии 2024 года: Дэвид Бейкер, Демис Хассабис и Джон М. Джампер. Изображение: Nobel Prize Outreach

Несмотря на то, что Нобелевские премии по физике и химии присуждаются отдельно, новые открытия связаны между собой: премию по физике вручили за основы машинного обучения, а премию по химии – за его использование в понимании того, как сворачиваются белки.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Белки – это молекулярные механизмы жизни, которые составляют значительную часть человеческого организма, включая мышцы, ферменты, гормоны, кровь, волосы и хрящи. Понимание их структуры имеет важное значение для науки и медицины – если белок сворачивается неправильно, то и работать будет не так. Это, в свою очередь, может привести к развитию таких заболеваний, как болезнь Альцгеймера, муковисцидоз или диабет.

Более того, форма белка зависит от мельчайших взаимодействий между атомами аминокислот, из которых он состоит: белок скручивается и сворачивается в окончательную форму, основанную на многих тысячах таких химических взаимодействий. Предсказание формы белка на протяжении десятилетий считалось одним из величайших проблем биологии.

Химия. Предсказание формы белка имеет огромное значения для будущих медицинских и биологических исследований. Изображение: embl.org. Фото.

Предсказание формы белка имеет огромное значения для будущих медицинских и биологических исследований. Изображение: embl.org

Таким образом, новое открытие проливает свет на то, как образуются и функционируют белки и имеет решающее значение для разработки новых лекарств. Предсказывая форму белка, исследователи могут понять, где с ним могут связываться небольшие молекулы – потенциальные кандидаты в лекарственные препараты. Работа лауреатов Нобелевской премии по химии также доказывает, что машинное обучение – это не просто инструмент для компьютерщиков, а неотъемлемая часть будущего биологии и медицины.

Читайте также: Как связаны лазеры, космос и молекулярная химия?

Литература

Нобелевская премия по литературе присуждается с 1901 года. За все время ее существования награду получил 121 автор, причем только 18 из них – женщины. В этом году Нобелевский комитет отметил наградой писательницу Хан Ган из Южной Кореи «за ее насыщенную поэтическую прозу, которая противостоит историческим травмам и раскрывает хрупкость человеческой жизни».

В 2016 году Хан Ган получила Международную Букеровскую премию в области художественной литературы за роман «Вегетарианец», который стал ее первым международным успехом и посвящен проблемам идентичности, сексуальности и насилия. Отметим, что карьера Ган началась в 1993 году с публикации стихов, а ее первый сборник коротких рассказов увидел свет два года спустя (в 1995 году).

Насыщенная, лирическая проза Хан Ган посвящена историческими травмам и невидимым наборам правил, которые каждый раз обнажают хрупкость человеческой жизни. Она обладает уникальным пониманием связей между телом и душой, живыми и мертвыми. Ее поэтичный и экспериментальный стиль – новаторство в современной прозе, — заявили представители Нобелевского комитета.

Литература. Премии по литературе 2024 года удостоилась южнокорейская писательница Хан Ган. Изображение: i0.wp.com. Фото.

Премии по литературе 2024 года удостоилась южнокорейская писательница Хан Ган. Изображение: i0.wp.com

Ранее лауреатами Нобелевской премии по литературе стали такие выдающиеся писатели, как Эрнест Хемингуэй, Иван Бунин, Александр Солженицын, Михаил Шолохов и Габриэль Гарсиа Маркес. Советский писатель, переводчик и поэт Борис Пастернак в 1958 году удостоился премии за роман «Доктор Живаго», однако под давлением советских властей был вынужден от нее отказаться.

Не пропустите: Что такое «Задача трех тел» и почему ее невозможно решить?

Мир

Через год атомным бомбардировкам японских городов Хиросима и Нагасаки исполнится 80 лет. Это ужасающие событие ознаменовало собой окончание Второй мировой войны и унесло жизни 120 000 человек. Еще тысячи получили ранения. Данные министерства здравоохранения Японии еще более беспощадны – сегодня в стране насчитывается более 106 000 человек, переживших бомбардировку. Их средний возраст составляет 85,6 года.

В 1956 году местные организации «Хибакуся» объединились, чтобы сформировать Японскую конфедерацию организаций пострадавших от атомной и водородной бомб, позже сокращенную до «Нихон Хиданке». Группа издает резолюции и публичные обращения, ежегодно направляя делегации в ООН и на мирные конференции, чтобы выступать за ядерное разоружение.

Мир. Нобелевскую премию мира — 2024 получила японская организация Nihon Hidankyo. Изображение: cms.apln.network. Фото.

Нобелевскую премию мира — 2024 получила японская организация Nihon Hidankyo. Изображение: cms.apln.network

В этом году Нобелевский комитет Норвегии заявил, что группа предоставила «весомые свидетельские показания того, что ядерное оружие никогда не должно быть использовано».

Это трогательное послание прозвучало в период повышенной глобальной нестабильности и недоверия. Напряженная геополитическая обстановка и угроза глобального ядерного конфликта – не просто слова, а пугающая реальность.

А вы знали, что Нобелевской премии по математике не существует? Ответ читайте в материале моего коллеги Рамиса Ганиева!

Экономика

Нобелевскую неделю традиционно завершила премия в области экономических наук, которую присудили Саймону Джонсону, Джеймсу Робинсончьи и Дарон Аджемоглу. Их исследования неравенства выявили поразительную связь между общественными институтами и процветанием. Если говорить несколько проще, то награды удостоились ученые, работа которых наглядно объясняет, почему одни страны богатые, а другие – бедные.

Дарон Аджемоглу – автор книги под названием «Власть и прогресс: наша тысячелетняя борьба за технологии и процветание», которая была опубликована в 2023 году. В ней ученый описывает, как изменилась судьба бывших колоний. Представители Шведской академии наук также отметили, что сокращение огромных различий в доходах между странами – одна из важнейших задач современности.

Лауреаты этого года продемонстрировали значимую роль общественных институтов в процветании стран и озвучили новые причины неравенства и разницы в благосостоянии в мире. Одно из важных объяснений — устойчивые различия в общественных институтах. Общества с низким уровнем верховенства закона и институтами, эксплуатирующими население, не способствуют экономическому росту и переменам к лучшему, – объяснил свое решение Нобелевский комитет.

Экономика. Дарон Асемоглу, Саймон Джонсон и Джеймс А. Робинсон были удостоены Нобелевской премии в области экономических наук. Изображение: rudolphina.univie.ac.at. Фото.

Дарон Асемоглу, Саймон Джонсон и Джеймс А. Робинсон были удостоены Нобелевской премии в области экономических наук. Изображение: rudolphina.univie.ac.at

Премию по экономике присуждали 55 раз с 1969 по 2023 год. Ее обладателями стали 93 человека, включая Роберта Манделла (за демонстрацию того, как курсы валют и процентные ставки влияют на экономическую активность), Гарри Марковица (за теорию оптимального портфеля ценных бумаг) и Теодора Шульца и Уильяма Артура Льюиса (за исследования в области проблем экономического развития и роста).

Вам будет интересно: Что будет, если люди поровну разделят все богатства мира?

В сентябре 2024 года экономисты опубликовали документ, в котором сообщили об ослаблении мировой экономики (37%), а не укрепления (9%). Основными препятствиями на пути роста исследователи назвали отсутствие политического консенсуса или воли (91% опрошенных), а также отсутствие глобального сотрудничества (67%).

Физики впервые наблюдали антигиперводород-4. Рассказываем что это такое

Физики впервые наблюдали антигиперводород-4. Рассказываем что это такое. Ученые впервые наблюдали антигипероводород-4, открыв новые горизонты в физике частиц. Изображение: bnl.gov. Фото.

Ученые впервые наблюдали антигипероводород-4, открыв новые горизонты в физике частиц. Изображение: bnl.gov

Международная команда физиков из коллаборации STAR на Релятивистском коллайдере тяжелых ионов (RHIC) в Брукхейвенской национальной лаборатории совершила прорыв в понимании фундаментальных свойств материи и антиматерии. Дело в том, что ученым впервые удалось наблюдать экзотическое антиядро, которое состоит из четырех частиц антиматерии – двух антинейтронов, одного антигиперона и одного антипротона. Новый тип ядра получил название антигиперводород-4, а его обнаружение подтверждает существование редких и экзотических объектов. Отметим, что коллайдер RHIC воссоздает условия ранней Вселенной, представляя уникальную возможность для изучения асимметрии между материей и антиматерией во Вселенной. Звучит непросто, согласны, так что давайте разбираться!

Асимметрия вещества и антивещества – одна из главных нерешенных задач в физике. Предполагается, что асимметрия возникла в первые доли секунды после Большого Взрыва.

Антиматерия и антивещество

Материю, которая состоит из античастиц – «зеркальных отражений» ряда элементарных частиц, обладающих одинаковыми спином и массой, – называют антиматерией. И хотя считается, что Вселенная состоит из материи, а не из антивещества, и то и другое, вероятно, присутствовало на космических просторах в равных количествах во время Большого взрыва около 14 миллиардов лет назад.

Антивещество, в свою очередь, состоит из античастиц, которые стабильно не образуются в природе (на сегодняшний день антивещество в нашей Галактике и за ее пределами не обнаружено). По этой причине ядра атомов антивещества синтезируются учеными и состоят из антипротонов и антинейтронов, а оболочки — из позитронов.

Антиматерия и антивещество. Асимметрия вещества и антивещества – одна из главных проблем современной науки. Изображение: interestingengineering.com. Фото.

Асимметрия вещества и антивещества – одна из главных проблем современной науки. Изображение: interestingengineering.com

Таким образом, чтобы изучить асимметрию вещества и антивещества во Вселенной физики первым делом должны обнаружить новые частицы антивещества. Именно такой логики придерживались авторы нового исследования, опубликованного в журнале Nature.

Больше по теме: О чем говорит странная физика черных дыр? Обсуждаем самые невероятные гипотезы

Эксперимент проходил на коллайдере RHIC для столкновения ядер золота при энергиях, достигающих 200 ГэВ на нуклон. Эти высокоэнергетические столкновения создают условия, аналогичные тем, что существовали в первые микросекунды после Большого взрыва и порождали кварк-глюонную плазму — состояние материи, где кварки и глюоны не связывались в привычные протоны и нейтроны.

Напомним, что релятивистский коллайдер тяжелых ионов (RHIC) – это один из немногих ускорителей в мире, способных разгонять тяжелые ионы до релятивистских скоростей, воссоздавая условия ранней Вселенной.

Международная исследовательская группа, которая специализируется на изучении свойств сильно взаимодействующей материи при высоких энергиях на RHIC – коллаборация STAR.

Антигиперводород-4

В рамках эксперимента ученым впервые удалось наблюдать антигиперводород-4 – экзотическое гиперядро антиматерии (гиперядра – это ядра, в которых содержатся гипероны – частицы, включающие по крайней мере один странный кварк). Это самое тяжелое гиперядро антиматерии из всех обнаруженных на сегодняшний день.

Авторы нового исследования также искали специфические сигнатуры распада антигиперводорода-4. Отметим, что распад этого нестабильного ядра приводит к образованию антигелия-4 и положительно заряженного пиона (π⁺). Антигелий-4, как говорится в работе, «ранее был обнаружен коллаборацией STAR, что помогло в идентификации новых событий».

Антигиперводород-4. Антигиперводород-4 состоит из антипротона, двух антинейтронов и антиламбда-гиперона (антигиперона). Изображение: futurezone.at. Фото.

Антигиперводород-4 состоит из антипротона, двух антинейтронов и антиламбда-гиперона (антигиперона). Изображение: futurezone.at

Стоит ли говорить, что поиск и наблюдение антигиперводорода-4 был крайне сложной задачей. Более того, по словам Лицзюань Жуана, физика из Брукхейвенской национальной лаборатории, «только по счастливой случайности четыре составляющие частицы — антипротон, два антинейтрона и антигиперон — могут выйти из столкновения достаточно близко друг к другу, чтобы сформировать антиядро».

Не пропустите: Физики впервые увидели, как фотоны преобразуются в материю

Команда также проанализировала треки миллиардов столкновений, чтобы найти редкие события, соответствующие распаду антигиперводорода-4. Каждый антигелий-4, выходящий из столкновения, мог быть связан с сотнями или даже тысячами положительных пионов.

Антигиперводород-4. При столкновении RHIC образуется множество пионов. Изображение: theconversation.com/. Фото.

При столкновении RHIC образуется множество пионов. Изображение: theconversation.com/

Главная задача для ученых состояла в том, чтобы найти пары частиц, чьи траектории пересекаются в одной точке — вершине распада, обладающей определенными характеристиками.

Результаты исследования

Несмотря на то что Большой взрыв должен был создать равные количества материи и антиматерии, наблюдаемая Вселенная состоит из материи. Понимание причин этого дисбаланса – одна из главных задач современной физики, – рассказали авторы нового исследования.

В результате тщательного анализа физики обнаружили 22 события, из которых около 6,4 можно было бы объяснить «фоновым» шумом. Это означает, что примерно 16 событий соответствуют реальным распадам антигиперводорода-4. Такая статистическая значимость позволила команде провести прямое сравнение свойств материи и антиматерии.

Результаты исследования. Антигиперводород-4 – ключ к разгадке тайн Вселенной. Изображение: techno-science.net. Фото.

Антигиперводород-4 – ключ к разгадке тайн Вселенной. Изображение: techno-science.net

Исследователи также сравнили «время жизни» антигиперводорода-4 с его материальным аналогом — гипергидрогеном-4 и провели сравнения пар гипертритона и антигипертритона. Полученные в рамках эксперимента результаты показали, что время жизни этих пар практически идентично, что соответствует предсказаниям Стандартной модели физики элементарных частиц.

Еще больше интересных статей о последних открытиях в области физики и высоких технологий, читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

Значение открытия для науки

Открытие, как отмечают его авторы, свидетельствует о том, что за исключением противоположных электрических зарядов, антиматерия имеет те же свойства, что и материя. Но так как наша Вселенная состоит преимущественно из материи, причины этого дисбаланса до сих пор остаются загадкой. К счастью, открытие антигиперводорода-4 предоставляет новый инструмент для исследования асимметрии.

Результаты эксперимента также подтверждают предсказания о том, что свойства антиматерии должны быть зеркальным отражением свойств материи.

Значение открытия для науки. Обнаружение 16 реальных событий с участием антигиперводорода-4 при ожидаемом фоновом шуме в 6,4 события дает высокую уверенность в результатах эксперимента. Изображение: giantfreakinrobot.com. Фото.

Обнаружение 16 реальных событий с участием антигиперводорода-4 при ожидаемом фоновом шуме в 6,4 события дает высокую уверенность в результатах эксперимента. Изображение: giantfreakinrobot.com

Если бы мы увидели нарушение этой симметрии, нам пришлось бы пересмотреть многие представления о физике. Тот факт, что симметрия сохраняется, укрепляет доверие к существующим теориям, – подчеркнула Эмили Дакворт из Кентского государственного университета.

Результаты нового исследования также открывают возможности для дальнейших исследований более тяжелых антиматериальных ядер и гиперядер, что может привести к более глубокому пониманию сильного взаимодействия и процессов, которые наблюдаются в таких экстремальных условиях, как внутренняя структура нейтронных звезд.

Вам будет интересно: Физика частиц и новейшие технологии: что нас ждет в ближайшие 10 лет?

Будущие исследования

В будущем команда коллаборации STAR планирует продолжить исследования в этой области, используя более совершенные методы детектирования и анализа данных. Возможность создания и наблюдения более сложных антиматериальных структур может привести к новым открытиям в области ядерной физики и космологии.

Доктор Хао Цю из Института современной физики полагает, что для дальнейшего изучения асимметрии между материей и антиматерией, необходимо открытие новых антиматериальных частиц. Он подчеркивает, что результаты нового исследования – это большой шаг вперед в экспериментальном изучении антиматерии.

Будущие исследования. В будущем эти исследования могут помочь разгадать одну из величайших тайн Вселенной — почему она состоит преимущественно из материи, а не антиматерии. Изображение: physicsworld.com. Фото.

В будущем эти исследования могут помочь разгадать одну из величайших тайн Вселенной — почему она состоит преимущественно из материи, а не антиматерии. Изображение: physicsworld.com

В общем и целом, авторы научной работы в очередной раз подтвердили правильность существующих моделей и совершили большой шаг вперед в экспериментальных исследованиях антивещества.

Ранее ученые приблизились к пониманию того, почему антиматерии во Вселенной меньше, чем материи. Подробности – здесь!

Отметим также, что историческое наблюдение антигиперводорода-4 подтверждает фундаментальные принципы физики и открывает новые пути для исследований, демонстрируя возможности современных технологий и важное значение международного сотрудничества в достижении прорывных результатов.

Почему ученым из России ограничили доступ к БАК?

Значимость международного сотрудничества, о которой говорят авторы нового исследования, увы, сегодня очевидна не всем. Недавно Европейская организация ядерных исследований (ЦЕРН), которая управляет Большим адронным коллайдером, решила разорвать последние связи с физиками из российских научных организаций начиная с 1 января 2025 года.

Таким образом ЦЕРН закрывает российским ученым доступ к своим исследовательским проектам. Сотрудники ЦЕРН подтвердили эту информацию журналистам The Insider, уточнив, что ограничение касается не только граждан России, но и ученых всех национальностей, которые сотрудничают с российскими институтами.

Почему ученым из России ограничили доступ к БАК? Большой адронный коллайдер – единственная в своем роде ускоритель частиц. С ним работают ученые со всего мира. Изображение: britannica.com. Фото.

Большой адронный коллайдер – единственная в своем роде ускоритель частиц. С ним работают ученые со всего мира. Изображение: britannica.com

В соответствии с правилами, которые вступят в силу 1 декабря 2024 года, уже 1 января 2025 года российские ученые, которые ранее не участвовали в проектах ЦЕРН, не смогут сотрудничать с европейским институтом.

По теме: Ученые из ЦЕРН стоят на пороге открытия «новой физики»

Единственным исключением стали действующие контракты между ЦЕРН и ОИЯИ, которые не будут расторгнуты. Это означает, что те российские ученые, которые уже работают над совместными проектами в ЦЕРН, смогут продолжить исследования.

Нас исключают из международного сотрудничества, частью которого мы были на протяжении многих лет. Например, моему коллеге, который проработал в ALICE 30 лет, придется уволиться. Никто не уволен, но в доступе отказано. Это тяжелый удар. Я бы описал это как разрушение всей российской области экспериментальной физики высоких энергий. В конце концов, эти исследователи были на переднем крае современной науки, работая в ЦЕРН, а теперь их оттуда выгоняют, лишая доступа к экспериментальным установкам и мировому научному сообществу. ЦЕРН – единственное место в мире, где возможны подобные исследования. Большой адронный коллайдер – единственный в своем роде. Без доступа к нему нет науки, – рассказал The Insider российский физик, принимавший участие в научных экспериментах в ЦЕРНе.

Почему ученым из России ограничили доступ к БАК? Российские ученые из научных организаций РФ с 1 января 2025 будут лишены возможности работать на БАК. Изображение: i.guim.co.uk. Фото.

Российские ученые из научных организаций РФ с 1 января 2025 будут лишены возможности работать на БАК. Изображение: i.guim.co.uk

Другой российский физик, работающий в ЦЕРН, утверждает, что принятое решение не пойдет на пользу европейской организации:

Это решение наносит два удара, и оба наносят ущерб науке в целом. С одной стороны, российские ученые лишены возможности продолжать работу, на которую уже ушли значительные ресурсы и годы их жизни; молодые физики лишены возможности проводить исследования в одной из самых передовых лабораторий мира в рамках сложившихся научных школ. С другой стороны, отъезд российских исследовательских групп ослабит направления их работы в ЦЕРН.

Свое решение ЦЕРН обосновывает тем, что российские исследователи принадлежат к государственным университетам, ректоры которых поддержали политику Российской Федерации в отношении Украины. При этом в организации отмечают, что если ученый из России получит работу, скажем, в итальянском исследовательском центре, сотрудничать с ним будут.

Нобелевская премия 2023: квантовые точки, м-РНК вакцины и аттосекунды

Решение, принятое Европейской организацией ядерных исследований наносит серьезный ущерб не только российской, но и мировой науке: без международного сотрудничества важнейшие для человечества открытия попросту невозможны.

Как мыло смывает грязь с нашего тела: самое простое объяснение

Как мыло смывает грязь с нашего тела: самое простое объяснение. Принцип работы мыла очень прост, и сейчас вы убедитесь в этом сами. Фото.

Принцип работы мыла очень прост, и сейчас вы убедитесь в этом сами

Мыло — это основное средство гигиены, которое мы используем каждый день, даже не задумываясь о его происхождении и составе. Оно существует уже тысячи лет, и его история намного интереснее, чем может показаться на первый взгляд. Люди начали применять подобные мылу вещества с древних времен, но отслеживать их историю сложно — мыло быстро разлагается, поэтому его древние образцы не сохранились до наших времен. Однако археологи находят свидетельства того, что еще в Месопотамии (Ближний Восток), около 2500 лет до нашей эры, люди использовали воду и различные натуральные ингредиенты, чтобы смывать грязь и лечить раны. В этой статье мы расскажем не только о том, как мыло очищает наше тело, но и о его удивительной истории, которая началась тысячи лет назад.

Из чего состоит мыло

Мыло — это предельно простое по составу средство гигиены. Оно простое даже несмотря на то, что в современных рецептах добавляют множество дополнительных компонентов.

Основу мыла составляет смесь жиров и щелочи. Щелочь — это растворимое соединение, которое вступает в реакцию с жирами, образуя мыльную массу. Как объяснил химик Кристин Конкол в интервью для Live Science, молекула мыла имеет две ключевые части: водолюбивую головку (гидрофильная часть) и жиролюбивый хвост (гидрофобная часть). Эта структура помогает мылу окружать и захватывать грязь, после чего она легко смывается водой.

Из чего состоит мыло. Некоторые люди выбирают производство мыла в качестве своего хобби. Источник изображения: kimikocraft.com. Фото.

Некоторые люди выбирают производство мыла в качестве своего хобби. Источник изображения: kimikocraft.com

Процесс изготовления мыла начинается с соединения жиров (как растительных, так и животных) с щелочью, что вызывает химическую реакцию под названием омыление. В результате образуются молекулы мыла и глицерин. Готовую смесь разливают в формы, где она затвердевает, а затем мыло оставляют созревать, чтобы оно стало прочным. Иногда в мыло добавляют ароматизаторы, чтобы оно приятно пахло.

Как работает мыло

Мыло работает благодаря своим особым молекулам, которые, как мы выяснили выше, состоят из двух частей. Одна из них притягивается к воде, а другая — к жирам и маслам. Когда человек намыливает кожу, эти молекулы действуют следующим образом: хвосты молекул мыла цепляются за жиры и масла, которые находятся на коже, а их головки притягиваются к воде. Это позволяет мылу обволакивать грязь и жир, превращая их в структуру, которую легко смыть водой.

Как работает мыло. На изображении наглядно показано, как работает мыло. Источник: livescience.com. Фото.

На изображении наглядно показано, как работает мыло. Источник: livescience.com

Объяснить принцип работы мыла можно на простом примере. Если человек пролил масло на стол и попробует смыть его простой водой, масло останется на поверхности, так как вода и жир не смешиваются. Но если добавить мыло, его молекулы захватят частицы масла, сделав их водорастворимыми. То же самое происходит и на коже: мыло помогает воде унести жир и грязь, делая их смываемыми, что и обеспечивает очищение.

Читайте также: Нужно ли мыть фрукты и овощи с мылом?

Когда было изобретено мыло

Как мы уже поняли, мыло имеет простую формулу и принцип работы. История этого средства гигиены уходит в глубокую древность.

На протяжении веков, во время мытья, люди преимущественно использовали простую воду. Например, представители индской цивилизации, которая существовала на территории современных Пакистана, Индии и Афганистана с 2600 по 1900 год до нашей эры, пользовались банями. Но воды явно было недостаточно, чтобы полностью избавиться от грязи и плохого запаха.

Когда было изобретено мыло. Скорее всего, люди изобрели мыло совершенно случайно. Источник изображения: sladik.net. Фото.

Скорее всего, люди изобрели мыло совершенно случайно. Источник изображения: sladik.net

Историки затрудняются сказать, когда было изобретено мыло, поскольку оно быстро разлагается. Самые ранние письменные упоминания о мылоподобных веществах относятся примерно к 2500 году до нашей эры — согласно им, первое мыло было создано в Месопотамии. Шумеры использовали воду и карбонат натрия, чтобы умываться, а для промывания ран использовали пиво и горячую воду.

Примерно через пару сотен лет в Аккадской империи начали применять смесь растений, масла финиковой пальмы и других природных компонентов, что по составу напоминает современное мыло. Хотя у древних людей не было современной науки, они могли создавать мыло случайно.

Когда было изобретено мыло. Старинные образцы мыла. Источник фотографии: culture.ru. Фото.

Старинные образцы мыла. Источник фотографии: culture.ru

В конечном итоге, мыло — это неотъемлемая часть нашей жизни, которую люди используют уже тысячи лет. Несмотря на простую формулу, его способность очищать кожу и смывать грязь делает его уникальным средством, проверенным временем.

Обязательно подпишитесь на наш Telegram-канал. Так вы не пропустите ничего важного!

Но как насчет микробов? Ведь мыло не только смывает грязь, но и помогает избавиться от опасных бактерий. Если вам интересно узнать, как именно мыло убивает микробы, не пропустите наш материал на эту тему!

Встряхивание газировки не увеличивает давление в ней, но почему она “взрывается”?

Встряхивание газировки не увеличивает давление в ней, но почему она “взрывается”? Если сильно встряхнуть газировку и открыть крышку — фонтан пены обеспечен. Источник фото: ecestaticos.com. Фото.

Если сильно встряхнуть газировку и открыть крышку — фонтан пены обеспечен. Источник фото: ecestaticos.com

Все мы хорошо с детства знаем, что если встряхнуть бутылку с газировкой перед ее открытием, мощный пенистый “фонтан” обеспечен. Казалось бы, в этом нет никакого секрета — после встряхивания давление в бутылке возрастает, в результате чего при открытии содержимое под давлением вырывается наружу. Однако есть один нюанс — бутылка с газировкой является закрытой системой. Это значит, что для увеличения давления в ней необходимо бутылку сдавить или что-нибудь в нее закачать. Поэтому, если вы закрепите на крышке манометр, то обнаружите, что после встряхивание давление не возрастает. Но что происходит на самом деле?

Как делают газированные напитки

Шипение и приятное покалывание во рту, из-за которых мы так любим газированные напитки, создает растворенный в жидкости углекислый газ (CO2). Это тот самый газ, который мы с вами выдыхаем, и который, по мнению некоторых ученых, вызывает потепление климата.

Надо сказать своим появлением газировка обязана пиву, которое люди на протяжение тысяч лет ценили за тонкий, яркий вкус и неповторимые ощущения во рту. И всем этим пиво во многом обязано пузырькам. Однако в этом напитке углекислый газ возникает естественным способом благодаря пивным дрожжам.

Как делают газированные напитки. Задолго до появления газировки люди заметили, что пузырьки придают пиву более тонкий и яркий вкус. Источник фото: ultraimagehub.com. Фото.

Задолго до появления газировки люди заметили, что пузырьки придают пиву более тонкий и яркий вкус. Источник фото: ultraimagehub.com

В 1767, химик из Великобритании Джозеф Пристли, работавший обычным пивоваром, решил сделать такими же газированными как пиво и другие напитки. Он долго работал над своей идеей, и в конечном итоге создал аппарат, названный сатуратором. Такие аппараты используются для создания газировки по сей день.

Принцип сатуратора довольно прост — чтобы насытить напиток углекислым газом, то есть, чтобы газ растворялся в жидкости, CO2 подается в бутылку под давлением, которое гораздо выше атмосферного. Чтобы этот газ не выходил, бутылку плотно закрывают крышкой, обеспечивающей полную герметичность емкости. В результате даже обычная вода становится гораздо вкуснее. Правда, злоупотреблять газированной водой не стоит, так как это может привести к проблемам со здоровьем. И тем более нельзя часто пить сладкие газированные напитки, которые несут еще большую опасность для здоровья. Ярким тому примером является население Мексики, где люди пьют Coca-Cola вместо воды.

Почему при открытии газировки появляются пузырьки и она шипит

Газ, который находится в бутылке вне жидкости, и углекислый газ, растворенный в напитке, достигают химического равновесия. Этот термин означает, что скорость, с которой углекислый газ покидает жидкость, равна скорости, с которой этот же газ в ней растворяется. В момент открытия крышки, давление в бутылке падает, в результате чего нарушается химическое равновесие. По этой причине растворенный в жидкости углекислый газ (H₂CO₃) преобразуется обратно в CO₂, то есть покидает жидкость.

Почему при открытии газировки появляются пузырьки и она шипит. Чем больше площадь поверхности газировки, тем интенсивнее из нее выходит углекислый газ. Источник фото: techinsider.ru. Фото.

Чем больше площадь поверхности газировки, тем интенсивнее из нее выходит углекислый газ. Источник фото: techinsider.ru

По этой причине в жидкости возникают пузырьки, наполненные газом, которые выталкиваются в окружающее пространство. Этот процесс сопровождается характерным шипением и образованием пены. Причем, чем больше напиток склонен к пенообразованию, тем больше пены появляется его на поверхности.

Почему газировку нужно наливать по краю стакана, чтобы она не пенилась

Чтобы в стакане было меньше пены и больше самого напитка, его наливают аккуратно по стенке стакана. Причем безразлично какой это напиток — квас, пиво, шампанское (еще один газированный напиток, появившийся задолго до газировки) и т.д. Например, по этой причине бармены, когда наливают пиво, держат стакан под определенным углом. Но как это работает?

Почему газировку нужно наливать по краю стакана, чтобы она не пенилась. Газированные напитки нужно наливать по краю стакана, чтобы не возникало пены. Источник фото: click-or-die.ru. Фото.

Газированные напитки нужно наливать по краю стакана, чтобы не возникало пены. Источник фото: click-or-die.ru

Весь секрет состоит в том, что скорость выхода углекислого газа из жидкости зависит от площади ее поверхности значительно увеличивает площадь поверхности по сравнению с тем, когда вы медленно наливаете ее по стенкам.

По этой же причине, чем шире стакан или бокал, тем быстрее жидкость в нем становится негазированной. Поэтому бокалы, например, для шампанского делают узкими и высокими.

Почему газировку нужно наливать по краю стакана, чтобы она не пенилась. При взбалтывании газировки, давление внутри бутылки не увеличивается. Источник фото: vk.com. Фото.

При взбалтывании газировки, давление внутри бутылки не увеличивается. Источник фото: vk.com

Почему после встряхивания газировка “взрывается”?

После встряхивания бутылки с газировкой, из нее активно начинает выделяться углекислый газ, но с чем это связано? В момент встряхивания мы заставляем газ, который находится над жидкостью, активно с ней смешиваться. Однако, как уже было сказано выше, содержимое бутылки находится в состоянии химического равновесия. То есть жидкость не может растворить больше углекислого газа, чем в ней находится.

Обязательно посетите наши каналы Дзен и Telegram, здесь вас ждут самые интересные новости из мира науки и последние открытия!

По этой причине лишний газ образует пузырьки по всей бутылке. Но что такое отдельно взятый пузырек в воде? Это дополнительная площадь поверхности воды. Так как таких пузырьков в жидкости возникает много, площадь ее поверхности сильно увеличивается. Каждый пузырек начинает расширяться, и площадь поверхности жидкости расширяется еще больше. В результате, когда мы открываем бутылку, пузырьки выталкивают жидкость из нее наружу.

Что такое статическое электричество и почему оно возникает?

Что такое статическое электричество и почему оно возникает? Каждый из нас сталкивается со статическим электричеством в повседневной жизни. Но что оно из себя представляет? Изображение: estatsolutions.co.uk. Фото.

Каждый из нас сталкивается со статическим электричеством в повседневной жизни. Но что оно из себя представляет? Изображение: estatsolutions.co.uk

Электричество – это совокупность явлений, в основе которых лежат существование, движение и взаимодействие электрических зарядов. Исследование электричества привело к возникновению множества идей, теорий и изобретений, без которых представить современную жизнь попросту невозможно. Однако между электричеством, используемым, скажем, для освещения городов и статическим электричеством, с которым мы можем столкнуться в самые неожиданные моменты повседневной жизни, есть разница. Так, если заряженные электрические частицы, как правило, ведут себя хаотично, уравновешивая друг друга, а их общий заряд в пространстве близок к нулю, то в случае статического электричества эти заряды скапливаются в одном месте, например, на поверхности шерсти или воздушного шарика. Рассказываем что это за явление природы и как его понимание помогает избежать неприятных ситуаций.

Что такое электричество?

Итак, статическое электричество и обычное электричество – это два разных типа электричества, которые проявляются по-разному и используются для различных целей. Так, первое возникает, когда электрический заряд накапливается на поверхности материала и остается на месте, пока не найдет путь для разряда, а второе благодаря источникам питания, таким как батареи, генераторы или электрические сети, которые создают и поддерживают поток электронов.

Электричество – это движение электрического заряда через проводник, такой как медь, алюминий или другие материалы. Этот тип электричества используется для передачи энергии.

Отметим, что история электричества началась еще в VII веке до нашей эры, когда греческий философ Фалес Милетский обнаружил, что потертый о шерсть янтарь (по-гречески – электрон) начинает притягивать к себе легкие предметы. Это явление, как мы знаем сегодня, оказалось проявлением электричества.

Что такое электричество? Изучения электричества началось с янтаря. Кто бы мог подумать? Изображение: i.ytimg.com. Фото.

Изучения электричества началось с янтаря. Кто бы мог подумать? Изображение: i.ytimg.com

Затем, в 1785 году французский физик Шарль Кулон открыл закон о взаимодействии электрических зарядов, напоминающий закон всемирного тяготения Ньютона. Таким образом, закон Кулона – это первый сформулированный на математическом языке фундаментальный количественный закон.

Это интересно: Ученые нашли способ, как добывать электричество из воздуха

Электрический заряд

Но главное в науке об электричестве – это электрический заряд – свойство тел, которые могут создавать вокруг себя электрическое поле и с его помощью воздействовать на другие заряженные тела. Напомним, что заряды бывают положительными и отрицательными, причем заряды одного знака отталкиваются, а заряды разных знаков притягиваются.

При движении заряженных тел также создается магнитное поле, что говорит о родстве магнетизма и электричества. Само же электричество стало неотъемлемой частью современной цивилизации. Для его получения строят электростанции, для хранения – производят батареи и аккумуляторы. Словом, электричество окружают нас повсюду, а еще находится непосредственно внутри наших тел.

Электрический заряд. Электричество добывают электростанции. Изображение: power.mhi.com. Фото.

Электричество добывают электростанции. Изображение: power.mhi.com

Да, да, в организме человека постоянно происходят электрические процессы. Так, нервные импульсы, то есть волны возбуждения, распространяются по нервному волокну и передают информацию от периферических рецепторов к нервным центрам и наоборот, от центральной нервной системы к мышцам и внутренним органам.

Хотите всегда быть в курсе новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Как добывают электричество?

Добыча электричества включает в себя несколько этапов и использует различные методы и технологии. Так, тепловые электростанции используют тепло, полученное путем сжигания угля, нефти, газа, природного газа или использования ядерного топлива для выработки электричества, а гидроэлектростанции – энергию падающей воды.

Если говорить несколько проще, то электричество добывается различными способами, в зависимости от доступных ресурсов и технологий. Каждый метод имеет свои преимущества и недостатки, связанные с экологическим воздействием, затратами и эффективностью.

Как добывают электричество? Электроэнергия, которая поступает в наши дома, вырабатывается электростанциями. Изображение: sdelanounas.ru. Фото.

Электроэнергия, которая поступает в наши дома, вырабатывается электростанциями. Изображение: sdelanounas.ru

Тепловые, гидроэлектростанции и атомные электростанции обеспечивают основную часть мирового производства электроэнергии, в то время как возобновляемые источники, такие как ветер и солнце, набирают популярность благодаря своей экологической чистоте.

Не пропустите: Новое открытие в медицине: электричество помогает заживлять раны в 3 раза быстрее

Статическое электричество

Итак, что же в таком случае представляет собой статическое электричество? Наиболее подробное объяснение звучит так: статическое электричество – это форма электричества, возникающая в результате дисбаланса между положительными и отрицательными зарядами внутри материала, который возникает, когда электроны (отрицательно заряженные частицы в атоме) перемещаются из одного материала в другой.

Если материал, принимающий электроны, изолирован или не является электрическим проводником, он удерживает электроны, что приводит к накоплению электрического заряда. Поскольку этот заряд неподвижен, его называют статическим электричеством. Когда условия позволяют накопленному заряду течь, избыток статического электричества разряжается, и оно превращается в текущее электричество.

Статическое электричество. Притяжение волос к наэлектризованному шарику – это статическое электричество. Изображение: cdn.hswstatic.com. Фото.

Притяжение волос к наэлектризованному шарику – это статическое электричество. Изображение: cdn.hswstatic.com

Если же говорить проще, то статическое электричество возникает из-за трения между двумя материалами, в результате чего электроны переходят с одного объекта на другой. Например, если вы трете воздушный шарик о волосы, шарик может забрать электроны у ваших волос. В результате шарик становится отрицательно заряженным, а волосы – положительно заряженными.

Больше по теме: Альтернативная энергия: как компании вырабатывают электричество за счет движения людей?

Теперь, когда шарик заряжен, он может притягивать легкие предметы, такие как кусочки бумаги. Это происходит потому, что положительные заряды в бумаге притягиваются к отрицательному заряду на шарике. Точно так же, когда вы снимаете синтетическую одежду, то можете услышать треск и увидеть маленькие искры – это и есть статическое электричество.

Использование статического электричества

Некоторые из наиболее известных способов использования статического электричества применяются в воздушных фильтрах и устройствах для удаления пыли, которые используют разницу в зарядах между материалами для удаления частиц, находящихся в воздухе.

Когда электростатически заряженные частицы воздуха проходят через систему фильтров, слои фильтра, имеющие противоположный заряд, улавливают их и удерживают в ловушке. Однако накопление статического заряда не всегда полезно.

Использование статического электричества. Статическое электричество можно использовать для различных забавных экспериментов и демонстраций. Изображение: sofamel.com. Фото.

Статическое электричество можно использовать для различных забавных экспериментов и демонстраций. Изображение: sofamel.com

Это может привести к повреждению важных электрических компонентов компьютерных микросхем и других компонентов электрических цепей. Кроме того, трение, возникающее при перекачивании жидкостей по шлангам или трубопроводам, может привести к накоплению статического заряда, который может быть опасен, если эти жидкости или выделяемые ими газы являются легковоспламеняющимися. При соприкосновении с заземленным предметом этот статический заряд может вызвать искру, которая может воспламенить эти материалы.

Как избежать неприятностей?

Чтобы избежать неприятных сюрпризов со статическим электричеством, ученые рекомендуют использовать увлажнители воздуха (все потому, что в сухом воздухе статическое электричество образуется чаще, поэтому увлажнитель может помочь), а также антистатические спреи, которые можно распылять на одежду, чтобы предотвратить накопление зарядов.

Читайте также: Почему электричество издает гудящий звук?

Нелишним будет подумать и о заземлении – если вы носите обувь с проводящей подошвой или дотрагиваетесь до металлических предметов, это поможет разрядить статическое электричество.

Почему у радуги семь цветов?

Почему у радуги семь цветов? В чем заключается настоящая магия радуги? Изображение: images.newscientist.com. Фото.

В чем заключается настоящая магия радуги? Изображение: images.newscientist.com

Несмотря на то, что радуга похожа на реальный объект, висящий где-то вдали, все попытки приблизиться к ней будут обречены на провал – она будет удаляться от нас с той же скоростью, с которой мы приближаемся к ней. Поймать ее тоже не выйдет – в конечном итоге, радуга – это оптический объект, который не существует в определенной точке пространства. На самом деле радуга – это прекрасная иллюзия, поняв природу которой, можно многое узнать об окружающем мире и Вселенной. Так, древние цивилизации испытывали гораздо больше трудностей с понимаем природы света, чем с физическими объектами и даже рассматривали его как механизм зрения, приводящий к появлению таких странностей, как радуга. Древние греки, например, были уверены в том, что все вокруг состоит из четырех элементов, поэтому семь цветов радуги воспринимались ими как проявление божественной воли.

Тайна света

Исаак Ньютон справедливо считается одним из величайших ученых в истории человечества. И дело не только в теории гравитации, разработанной им в семнадцатом веке и описывающей движение объектов вблизи поверхности Земли, орбиту Луны вокруг Земли и орбиты планет вокруг Солнца. Именно Ньютон обнаружил, что белый свет – это смесь всех цветов.

К такому выводу ученый пришел, проведя эксперимент. Сначала он затемнил свою комнату таким образом, чтобы ни один луч света не мог в нее проникнуть. Затем раздвинул шторы так, чтобы сквозь них пробивался луч света, толщиной в карандаш и проходил через призму – треугольный кусок стекла.

Тайна света. Белый свет – это смесь всех цветов. Изображение: cdn.britannica.com. Фото.

Белый свет – это смесь всех цветов. Изображение: cdn.britannica.com

Призма, как оказалось, преломляла узкий луч белого света таким образом, что на выходе из нее он переставал быть белы, становясь разноцветным, прямо как радуга. Ньютон назвал свою искусственную радугу спектром.

Это интересно: В России чаще будет появляться радуга — почему это плохой знак?

Световой спектр

Спектр, о котором говорил Ньютон, устроен следующим образом – когда луч света проходит через воздух и попадает в стекло, он преломляется. Отметим, что преломление называется рефракцией, которая, в свою очередь, происходит не только в стекле, но и в воде. Об этом особенно важно помнить, когда мы говорим о радуге, ведь именно за счет рефракции весло выглядит изогнутым, когда мы погружаем его в реку.

Итак, свет преломляется, когда проходит через стекло или воду, но главное в этом процессе – это угол преломления, который напрямую зависит от цвета светового луча. Так, красный свет преломляется под более тупым углом, чем синий.

Световой спектр. Ньютон оказался прав, предположив, что белый свет – это смесь различных цветов. Изображение: www.mozaweb.com. Фото.

Ньютон оказался прав, предположив, что белый свет – это смесь различных цветов. Изображение: www.mozaweb.com

Таким образом, пропустив через призму белый свет, мы увидим, что синий свет преломится больше, чем красный, поэтому при выходе с другой стороны призмы они разделятся, а между ними окажутся желтый и зеленый. В результате перед нами появится ньютоновский спектр: все цвета радуги, расположенные в обычном для радуги порядке – красный, оранжевый, зеленый, голубой, синий, фиолетовый.

Хотите всегда первыми узнавать о последних открытиях в области науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Эксперименты Ньютона

Безусловно, Исаак Ньютон не был первым человеком, создавшим радугу с помощью призмы – у других экспериментаторов получался такой же результат, однако они считали, что это призма «окрашивает» белый свет. Ньютон же посмотрел на радугу иначе и предположил, что призма просто отделяет цвета друг от друга.

Справедливость своей догадки Ньютон впоследствии доказал серией экспериментов. Он брал призму, как и раньше, и направлял разноцветный поток света в маленькую прорезь, так что через нее проходил луч только одного цвета, например, красный. Потом на пути красного луча он установил еще одну призму, которая преломляла свет как обычно, однако на выходе луч оставался красным – никаких дополнительных цветов не появлялось.

Эксперименты Ньютона. Ньютон разгадал тайну света и радуги. Изображение: www.thoughtco.com. Фото.

Ньютон разгадал тайну света и радуги. Изображение: www.thoughtco.com

Таким образом выдающийся ученый подтвердил свою теорию о белом свете как смеси всех цветов и… продолжил эксперименты. Так, в следующий раз Ньютон решил стать более изобретательным и задействовал сразу три призмы. По сути, это был контрольный эксперимент, окончательно разрешающий научный спор тех лет.

Вам будет интересно: Расплетая радугу — как тайны света привели человечество к открытию темной материи?

Почему мы видим радугу?

Итак, с призмами разобрались, но что насчет настоящей радуги? Чтобы понять как она образуется, необходимо вспомнить про рефракцию, так как радуга появляется, когда солнечный свет отражается от капель дождя и попадает в глаза наблюдателя. Большинство дождевых капель имеют сферическую форму, которая и обеспечивает условия, необходимые для появления радуги.

Чтобы увидеть радугу, необходимы и другие условия, включая расположение солнца и дождевых капель по отношению к наблюдателю. Это означает, что солнце должно находиться у нас за спиной, низко над горизонтом (в идеале под углом не менее 42°). Чем ниже солнце опускается в небе, тем большую дугу радуги мы увидим. Радуга выглядит полукруглой над ровной поверхностью только на восходе или закате, когда солнце находится точно над горизонтом. В большинстве случаев виден меньший участок дуги.

Почему мы видим радугу? Для формирования радуги необходим ряд важных условий. Изображение: images.ctfassets.net. Фото.

Для формирования радуги необходим ряд важных условий. Изображение: images.ctfassets.net

Дождь, туман или какой-либо другой источник образования водяных капель также должен находится в нашем поле зрения, а вот размер дождевых капель напрямую не влияет на геометрию радуги, но туман или дымка, как правило, усиливают эффект.

Отметим, что солнечный свет состоит из света с множеством различных длин волн, которые замедляются на различную величину, в результате чего белый свет расщепляется или рассеивается. При этом более короткие синие и фиолетовые волны слегка меняют направление на более длинные волны красного света. Поскольку вода плотнее воздуха, свет, проходящий из воздуха в дождевую каплю под определенным углом, замедляется и меняет направление в процессе, называемом преломлением.

Не пропустите: Как бозон Хиггса помогает раскрывать тайны Вселенной?

Таким образом наблюдатель, находясь в нужном месте, увидит, как рассеянный солнечный свет отражается обратно в его сторону. Свет, рассеянный множеством капель, попадая в глаза наблюдателя, будет выглядеть как разноцветная радуга.

Различные цвета выходят из капель под углами, варьирующимися примерно на два градуса, от красного до фиолетового. Красный свет, видимый наблюдателем, исходит от капель, которые располагаются немного выше в атмосфере, чем те, что рассеивают фиолетовый свет в направлении наблюдателя.

Почему мы видим радугу? Радуга – это прекрасная иллюзия, скрывающая в себе природу света. Изображение: timesknowledge.wwmindia.com. Фото.

Радуга – это прекрасная иллюзия, скрывающая в себе природу света. Изображение: timesknowledge.wwmindia.com

Человеческий глаз способен различать множество оттенков, поэтому принято считать, что радуга состоит из семи цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. А значит самое время вспомнить знаменитую детскую считалку, обозначающую семь цветов радуги – «Каждый охотник желает знать где сидит фазан».

Альтернативная теория гравитации – новое понимание главной силы Вселенной

Альтернативная теория гравитации – новое понимание главной силы Вселенной. Гравитация управляет Вселенной. Но при чем тут темная материя? Изображение: www.techexplorist.com. Фото.

Гравитация управляет Вселенной. Но при чем тут темная материя? Изображение: www.techexplorist.com

Ученые почти столетие пытаются разгадать тайну темной материи –гипотетической формы материи, которая, как считается, ответственна за определенные гравитационные эффекты, необъяснимые общей теорией относительности (ОТО). К счастью, новая гипотеза может изменить ход событий. В работе, недавно опубликованной в журнале Monthly Notices of the Royal Astronomical Society продемонстрировано возможное существование самой могущественной силы во Вселенной – гравитации – без присутствия массы. Столь необычный подход по мнению авторов исследования может поставить под сомнение само существование темной материи. В основе новой теории лежит идея о том, что гравитация, необходимая для удержания галактик и скоплений галактик вместе, может быть обусловлена особыми топологическими структурами, образовавшимися в ранней Вселенной. Звучит непросто, так что давайте разбираться!

Гравитация – одна из четырех основных сил в физике, наряду с электромагнитной силой, сильным и слабым ядерным взаимодействием.

Ее высочество гравитация

Прежде чем погружаться в запутанные дебри новой теории, определимся с гравитацией и тем, почему она играет ключевую роль в формировании и структуре Вселенной. Эта фундаментальная сила природы, которая притягивает объекты друг к другу, буквально неотделима от массы объектов – чем больше их масса, тем сильнее их гравитационное притяжение.

Помните знаменитое яблоко Исаака Ньютона? Именно он в XVII веке заметил, что яблоки падают с дерева на землю и предположил, что происходит это из-за силы, которая действует между яблоком и Землей. Ньютон разработал закон всемирного тяготения, который гласит, что сила гравитации между двумя объектами пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Ее высочество гравитация. Классическая теория тяготения Ньютона — закон, описывающий гравитационное взаимодействие в рамках классической механики. Изображение: static.techno-science.net. Фото.

Классическая теория тяготения Ньютона — закон, описывающий гравитационное взаимодействие в рамках классической механики. Изображение: static.techno-science.net

Больше по теме: Может ли гравитация быть источником света?

На Земле гравитация действует так, что все объекты падают на поверхность с ускорением примерно 9.8 м/с². Это означает, что при свободном падении скорость объекта увеличивается на 9.8 метров в секунду каждую секунду. В космосе же гравитация ведет себя иначе, удерживая планеты на орбитах вокруг звезд. Гравитация также ответственна за формирование звезд, планет и галактик – облака газа и пыли в космосе сжимаются под действием гравитации, образуя звезды и планетные системы.

Общая теория относительности

Теория всемирного тяготения Ньютона главенствовала в науке вплоть до начала ХХ века, когда Альберт Эйнштейн предложил новую теорию гравитации — общую теорию относительности (ОТО), которая описывает гравитацию не как силу, а искривление пространства и времени, вызванное массой объектов. Чем больше масса объекта, тем сильнее он искривляет пространство-время вокруг себя. ОТО удивительна, так как объясняет, почему объекты движутся по определенным траекториям в гравитационном поле.

Общая теория относительности. Общая теория относительности — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Изображение: static.dw.com. Фото.

Общая теория относительности — общепринятая в настоящее время теория тяготения, описывающая тяготение как проявление геометрии пространства-времени. Изображение: static.dw.com

Более того, за прошедшее столетие мы узнали о том, что гравитация имеет несколько эффектов, таких как чувство тяжести (которое мы испытываем на Земле), приливные силы Луны (гравитация спутника является причиной приливов и отливов на Земле). Самое интересное, однако, происходит за пределами Земли и относится к черным дырам – объектам, сила гравитации которых настолько сильна, что даже свет не может покинуть их пределы.

Не пропустите: Что такое Общая теория относительности Эйнштейна?

Итак, если говорить совсем просто, то гравитация — это неотъемлемая часть нашей жизни и Вселенной. Она управляет движением планет, формированием звезд и галактик и даже влияет на наши повседневные действия. Понимание этой фундаментальной силы природы помогает нам изучать устройство окружающего мира.

Гравитация и темная материя

Несмотря на кажущуюся простоту, гравитация представляет собой одну из величайших загадок современной науки. Так, исследователи до сих пор выдвигают самые разные теории на ее счет – от ускорения как ведущей силы до гравитонов – гипотетических безмассовых элементарных частиц. Все потому, что две ведущие физические теории – ОТО и квантовая механика – идеально работают по отдельности, но вместе противоречат друг другу.

Иными словами ученые по-прежнему находятся в поисках «теории всего», способной объяснить устройство нашего мира как в макро, так и микро масштабах, а гравитация является одним из камней преткновения. Во-первых, большую часть времени гравитацию относили исключительно к области материи, но что, если это на самом деле не так? Что, если эта удивительная сила природы может существовать без массы?

Гравитация и темная материя. Кажется, пришла пора посмотреть на гравитацию под совершенно другим углом. Изображение: images.newscientist.com. Фото.

Кажется, пришла пора посмотреть на гравитацию под совершенно другим углом. Изображение: images.newscientist.com

Звучит максимально непривычно, однако именно эта идея привлекла внимание авторов недавно опубликованного исследования. Дело в том, что если гравитация может существовать без массы, то необходимость в темной материи – гипотетической материи, не вступающей в электромагнитное взаимодействие и составляющей до 85% от общего объема Вселенной – полностью отпадает.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Напомним, что существование темной материи не доказано, а ее концепция впервые была разработана для объяснения того, что галактики удерживаются вместе при высокоскоростном вращении. Введение этой гипотетической и невидимой материи позволило физикам выдвигать всевозможные идеи и избегать несостыковок в существующих теориях.

Топологические дефекты

Ведущий автор нового исследования, астрофизик Ричард Лью из Университета Алабамы в Хантсвилле, предположил, что вместо темной материи, связывающей галактики и другие небесные тела, Вселенная может содержать тонкие, похожие на оболочку слои «топологических дефектов», которые порождают гравитацию без какой-либо основной массы.

Топологические дефекты – это макроскопические структуры, обладающие макроскопическими свойствами. Пространственные масштабы влияния топологических дефектов можно сопоставить с размером наблюдаемой Вселенной.

Лью начал с попытки найти другое решение уравнений поля Эйнштейна, которые связывают искривление пространства-времени с присутствием в нем материи. Как описал Эйнштейн в ОТО, пространство-время искривляется вокруг сгустков материи и потоков излучения во Вселенной в зависимости от их энергии и импульса. Эта энергия, конечно же, связана с массой в знаменитом уравнении ученого: E=mc2.

Топологические дефекты. Теория Эйнштейна на порядок сложнее, чем ньютоновская теория всемирного тяготения, а новая теория заходит еще дальше, убирая из уравнения массу. Изображение: thedebrief.b-cdn.net. Фото.

Теория Эйнштейна на порядок сложнее, чем ньютоновская теория всемирного тяготения, а новая теория заходит еще дальше, убирая из уравнения массу. Изображение: thedebrief.b-cdn.net

Таким образом, масса объекта связана с его энергией, которая искривляет пространство-время – это искривление пространства-времени и есть то, что Эйнштейн назвал гравитацией. Иными словами ОТО гласит, что гравитация неразрывно связана с массой, однако Лью утверждает, что это не так.

Это интересно: Существует ли темная материя? И почему мнения ученых разделились?

Космические струны

В ходе работы астрофизик приступил к решению упрощенной версии уравнений поля Эйнштейна, которые допускают конечную силу притяжения при отсутствии какой-либо обнаруживаемой массы. Лью говорит, что его усилия были «продиктованы разочарованием в существующем положении вещей, а именно в представлении о существовании темной материи, несмотря на отсутствие каких-либо прямых доказательств на протяжении целого столетия«.

Решение, предложенное автором работы, заключается в выявлении топологических дефектов в форме оболочек, которые могут возникать в очень компактных областях пространства с очень высокой плотностью вещества. Эти наборы концентрических оболочек содержат тонкий слой положительной массы, спрятанный внутри внешнего слоя отрицательной массы.

Эти две массы нейтрализуют друг друга, поэтому общая масса двух слоев равна нулю. Но когда звезда находится на этой оболочке, то испытывает большую гравитационную силу, притягивающую ее к центру, – говорится в статье.

Космические струны. Гравитация без массы действительно может существовать. Правда на данный момент есть только математические доказательства. Изображение: muyinteresante.com. Фото.

Гравитация без массы действительно может существовать. Правда на данный момент есть только математические доказательства. Изображение: muyinteresante.com

Напомним, что топологические дефекты – это очень компактные области пространства с очень высокой плотностью вещества, которые обычно представляют в форме линейных структур, известных как космические струны. Однако также возможны двумерные структуры, такие как сферические оболочки.

Некоторые ученые не согласны с выводами Лью и полагают, что именно темная материя является ключом к теории гравитации. Подробности здесь, не пропустите!

Более того, ученым давно известно, что сила притяжения позволяет всем объектам, как безмассовым, так и иным, взаимодействовать друг с другом, поскольку это, по сути, влечет за собой искривление самого пространства-времени. Например, ранее было установлено, что небесные тела оказывают гравитационное притяжение на безмассовые фотоны.

Безусловно, все предположения, выдвинутые мной в статье спорные, но если в будущем они подтвердятся, то необходимость продолжать искать темную материю полностью отпадает. Таким образом, следующий вопрос заключается в том, можно ли подтвердить или опровергнуть мои предположения с помощью наблюдений, – говорит Лью.

Космические струны. Вселенная полна загадок. Изображение: i0.wp.com. Фото.

Вселенная полна загадок. Изображение: i0.wp.com

И хотя астрофизик признает, что предложенное им решение «наводит на размышления» и само по себе не может дискредитировать гипотезу о темной материи, его работа может стать интересным математическим упражнением, так как позволяет взглянуть на Вселенную и управляющие ей силы под другим углом. Тем не менее выводы, опубликованные в статье, являются первым математическим доказательством того, что гравитация может существовать без массы. А это – уже не мало, согласны?

Самый долгий эксперимент в истории можно смотреть в прямом эфире

Самый долгий эксперимент в истории можно смотреть в прямом эфире. Американский физик Джон Мэйнстоун следит за падающим битумом. Источник фотографии: peoples.ru. Фото.

Американский физик Джон Мэйнстоун следит за падающим битумом. Источник фотографии: peoples.ru

Проведение научных экспериментов — это то, чем большую часть своего рабочего времени занимаются ученые. Именно в результате опытов они и совершают открытия, которые рассказывают интересные подробности о строении окружающего нас мира. Обычно эксперименты идут несколько недель или месяцев, но некоторые тянутся на многие годы. Например, таковым является опыт с капающим пеком по измерению времени течения битума в Квинслендском университете (Австралия). Пек представляет собой осадок от перегонки каменноугольных смол и выглядит как твердое вещество. Авторы этого исследования хотели показать, что даже кажущиеся твердыми вещи на самом деле могут быть жидкостями с высокой вязкостью. Эксперимент длится уже почти сотню лет, и наблюдать на зим можно в прямом эфире.

Опыт с падающим пеком

Самый долгий эксперимент по версии Книги рекордов Гиннесса был начат в 1927 году австралийским профессором физики Томасом Парнеллом. Чтобы продемонстрировать свойства высоковязких материалов, он взял остатки перегонки каменноугольных смол. Профессор разогрел их и поместил в стеклянную воронку — чтобы материал принял форму сосуда, потребовалось три года.

Опыт с падающим пеком. Девушка держит бумажку с датами падения капель пека. Источник фотографии: The University of Queensland. Фото.

Девушка держит бумажку с датами падения капель пека. Источник фотографии: The University of Queensland

В 1930 году исследователь отрезал нижнюю часть воронки и тем самым позволил высоковязкой жидкости медленно вытекать в установленный снизу сосуд. Нужно ли говорить, что капли из предельно вязкого материала образовывались очень долго? Первая капля битума упала в сосуд спустя восемь лет с начала эксперимента. В дальнейшем капли образовывались примерно раз в десять лет. В девятый раз капля падала в 2014 году, но камеры оказались слишком слабыми, чтобы запечатлеть этот момент. На сегодняшний день еще никто не застал это событие.

Камеры пытались занять момент падения капли, но не смогли

Самый долгий эксперимент в истории

Эксперимент длится уже почти сотню лет. Профессор Томас Парнелл и его ассистент Джон Мейнстоун уже умерли, поэтому сегодня за проектом присматривает Эндрю Уайт. Воронка с вязким материалом находится под стеклянной колбой, чтобы на процесс не повлияли внешние условия. На эту колбочку направлено несколько веб-камер, которые ежедневно ведут прямую трансляцию на сайте Квинслендского университета.

У этой трансляции не так уж и много зрителей, потому что 99% времени там ничего не происходит. Это зрелище можно сравнить с британским фильмом «Paint Drying», в котором на протяжении 10 часов демонстрируется стена с сохнущей краской. Только в случае с каплей битума, действие продолжается много лет. Однако, у зрителей есть небольшой шанс своими глазами увидеть момент падения вязкой массы в сосуд. Но кому это нужно?

Самый долгий эксперимент в истории. Смотреть прямую трансляцию опыта с капающим пеком можно на сайте университета. Фото.

Смотреть прямую трансляцию опыта с капающим пеком можно на сайте университета

Примечательно, что с 1988 года эксперимент начал длиться дольше, чем обычно. До этого момента в комнате, где стоит сосуд, постоянно менялась температура, из-за чего капли падали с периодичностью 8-10 лет. Потом в помещении установили кондиционер для сохранения одинаковой температуры, поэтому сейчас капли образуются с частотой 12-14 лет.

На сегодняшний день эксперимент лишь показал, что осадок от каменноугольных смог имеет вязкость примерно в 230 миллиардов раз больше, чем у воды.

Эксперимент Розенхана: как попасть в сумасшедший дом?

Самый долгий эксперимент с сорняками

Еще один очень долгий эксперимент проводится в университете американского штата Мичиган. В 1879 году профессор ботаники Уильям Джеймс Билл наполнил двадцать бутылок от виски влажным песком и поместил туда семена 21 вида сорняков. Он закопал их горлышком вниз, чтобы внутрь не попала вода — цель эксперимента заключалась в том, чтобы проверить, насколько живучими являются сорняки.

Исследователь, а потом и перенявшие его дело ученые, раскапывали по одной бутылке раз в несколько лет. Постепенно они увеличивали время между изучением каждого сосуда. Пятнадцатая бутылка была выкопана только в 2000 году, следующая будет извлечена только в 2100 году.

Самый долгий эксперимент с сорняками. Еще один эксперимент в мире длится более 100 лет, но не входит в Книгу рекордов Гиннесса. Источник фотографии: atlasobscura.com. Фото.

Еще один эксперимент в мире длится более 100 лет, но не входит в Книгу рекордов Гиннесса. Источник фотографии: atlasobscura.com

На данный момент эксперимент помог выявить самые живучие виды сорняков. Ученые уже пытаются выяснить, благодаря чему они могут выживать на протяжении десятков лет.

А вы подписаны на наш Дзен-канал с открытыми комментариями? Проверьте прямо сейчас!

Описанные выше эксперименты предельно безопасны. Но иногда научные опыты ведут к ужасным последствиям — например, особенно шокирующей является история эксперимента «Вселенная-25». Он завершился тем, что испытуемые начали заниматься каннибализмом, поэтому хорошо, что опыт проводился на мышах.

Как бозон Хиггса помогает раскрывать тайны Вселенной?

Как бозон Хиггса помогает раскрывать тайны Вселенной? Бозон Хиггса – фундаментальная частица, открыть которую удалось всего 12 лет назад. Изображение: assets.newatlas.com. Фото.

Бозон Хиггса – фундаментальная частица, открыть которую удалось всего 12 лет назад. Изображение: assets.newatlas.com

В 2012 году ученые сообщили об одном из величайших событий в области квантовой физики – открытии бозона Хиггса – фундаментальной частицы, несущей силы поля Хиггса и отвечающую за придание массы другим частицам. Предположение о существовании поля Хиггса впервые выдвинул физик Питер Хиггс в середине шестидесятых годов (в честь него названы и поле и частица). 2024 год, увы, стал последним в жизни этого выдающегося ученого – 8 апреля Питер Хиггс скончался в своем доме в Эдинбурге в возрасте 94 лет. Его беспрецедентное наследие, однако, продолжает оказывать огромное влияние на будущее физики элементарных частиц, как никакое другое открытие до него. Более того, если текущие измерения бозона Хиггса верны, то Вселенная нестабильна в своем нынешнем состоянии. Это, в свою очередь, означает, что нам придется пересмотреть все имеющиеся знания как о космосе, так и о физике элементарных частиц. Ну а новое открытие, о котором погоаорим в данной статье, лишь подливает масла в огонь.

Открытие бозона Хиггса совместными усилиями ATLAS и CMS сыграло решающую роль в раскрытии тайн поля Хиггса и его потенциала. Многие ученые полагают, что «Новая физика» не за горами.

Наследие Хиггса

Английский физик Питер Уэйд Хиггс родился в 1929 году. В то время понимание материи и Вселенной было совершенно иным, а ведущая модель материи гласила, что существуют всего три фундаментальные неделимые частицы – протоны (находятся внутри атомных ядер), электроны (окружают протоны) и фотоны (частицы света, ответственные за электромагнитное взаимодействие).

При жизни Хиггса произошла удивительная революция, кульминацией которой стало создание Стандартной модели физики элементарных частиц – самой успешной в истории системы для понимания строения Вселенной. Однако путь Хиггса к одному из величайших открытий в истории науки был тернистым. Более половины своей жизни физик ждал подтверждения своих теоретических предсказаний.

Наследие Хиггса. Питер Хиггс — британский физик-теоретик, профессор Эдинбургского университета. Лауреат Нобелевской премии по физике. Изображение: dzeninfra.ru. Фото.

Питер Хиггс — британский физик-теоретик, профессор Эдинбургского университета. Лауреат Нобелевской премии по физике. Изображение: dzeninfra.ru

Читайте также: Обнаружены новые элементарные частицы. Почему это важно?

Идею о существовании частицы, способной придавать массу всем другим частицам, Хиггс озвучил в 1964 году, однако окончательно подтвердить ее существование удалось лишь к 2013 году на Большом адронном коллайдере. В том же году британский ученый был удостоен Нобелевской премии по физике, а частица, названная в его честь стала всемирно известной.

ЦЕРН – европейская организация по исследованию элементарных частиц, объявила об открытии бозона Хиггса с большой помпой. Однако сам Хиггс, казалось, был этим смущен и всегда подчеркивал, что многие другие ученые внесли свой вклад в теорию и озвучивали похожие идеи, – говорится в некрологе.

Первая статья Хиггса была опубликована в 1964 году в журнале Physical Review Letters, в которой говорилось о новом типе массивных бозонов (одном из типов субатомных частиц). В то время другие теоретики работали в том же направлении, но знаменитая ныне «частица Бога» тогда существовала только в теории.

Наследие Хиггса. Хиггс использовал математические идеи о симметрии – и о том, как она может быть нарушена – чтобы объяснить, как безмассовые частицы могут приобретать массу. Изображение: www.cnet.com. Фото.

Хиггс использовал математические идеи о симметрии – и о том, как она может быть нарушена – чтобы объяснить, как безмассовые частицы могут приобретать массу. Изображение: www.cnet.com

Напомним, что бозон Хиггса связан с полем Хиггса, которое придает массу другим частицам, таким как электроны и кварки, о чем Хиггс сообщил в 1966 году. Если бы тогда поле Хиггса удалось обнаружить, то ученые доказали бы, что стандартная модель – последовательная теория природы. Поиск бозона Хиггса, однако, оказался чрезвычайно сложной задачей. Сам ученый и вовсе считал, что этот вопрос не будет решен при его жизни.

Хотите всегда быть в курсе последних открытий в области физики и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Уникальные свойства «частицы Бога»

Итак, как мы знаем сегодня, в основе Вселенной лежат уникальные свойства бозона Хиггса. Подобно твердому, жидкому и газообразному состояниям вещества, поле Хиггса соответствует фазе Вселенной, которую можно определить, измерив взаимодействие бозона Хиггса с другими частицами.

За десятилетие, прошедшее с момента его открытия, многие из этих взаимодействий были обнаружены на БАК. Эти результаты подняли новые вопросы. Стабильность Вселенной – ее способность сохраняться в своем нынешнем состоянии более или менее вечно — по-видимому, зависит от массы и взаимодействий бозона Хиггса.

Уникальные свойства «частицы Бога». Поле Хиггса взаимодействует с атомными субчастицами. Изображение: media.licdn.com. Фото.

Поле Хиггса взаимодействует с атомными субчастицами. Изображение: media.licdn.com

Если текущие измерения этой частицы верны, Вселенная попросту нестабильна, а значит что в какой-то момент она может перейти в другую форму. Ответы, поиском которых сегодня занимаются ученые, могут доказать ошибочность Стандартной модели.

Физики также хотят понять, действительно ли поле Хиггса объясняет все массы элементарных частиц, как предсказывает Стандартная модель. Что касается редкого распада бозонов Хиггса, о которых мы ранее рассказывали, то выяснить, на какие еще частицы они распадаются исследователи пока не могут.

Чтобы окончательно разобраться в хитрых переплетениях субатомных частиц, ученые из Европы, США и Китая работают над строительством новых коллайдеров элементарных частиц, ориентированных на изучение бозона Хиггса. Наследием выдающегося ученого станет программа экспериментальной физики элементарных частиц 21-го века.

Уникальные свойства «частицы Бога». Питер Хиггс – человек из другой эпохи. Изображение: habrastorage.org. Фото.

Питер Хиггс – человек из другой эпохи. Изображение: habrastorage.org

Необходимо отметить, что Хиггс был физиком из другой эпохи. Сегодня практически невозможно представить, чтобы кто-то с его послужным списком смог удержаться в академических кругах – он опубликовал всего несколько статей, почти все из которых написал в одиночку. Все потому, что современная академическая среда построена на жесткой конкуренции, а ученые вынуждены публиковать работы как можно чаще.

Трудно представить, что в нынешних условиях у меня будет достаточно тишины и покоя, чтобы заниматься тем, чем я занимался в 1964 году… Сегодня я бы не устроился на академическую работу… Не думаю, что меня сочли бы достаточно продуктивным, – сказал Хиггс в интервью 2013 года.

Симметрия и новые эксперименты

Так как научные открытия (а тем более прорывы) требуют времени, говорить о полном пересмотре нашего понимания устройства мироздания и Веленной несколько преждевременно. Но повод для пересмотра Стандартной модели все-таки есть: бозон Хиггса является лишь одним из результатов «спонтанного нарушения симметрии» поля Хиггса, а значит могут существовать и другие подобные бозоны.

Эти дополнительные субчастицы могут взаимодействовать друг с другом и с бозоном Хиггса. Если их существование удастся подтвердить экспериментальным путем, то ученые, вероятно, смогут объяснить дисбаланс вещества и антиматерии во Вселенной.

Симметрия и новые эксперименты. Вселенная окутана тайнами. Изображение: symmetrymagazine.org. Фото.

Вселенная окутана тайнами. Изображение: symmetrymagazine.org

Не пропустите: Что такое бозон Хиггса и почему ученые хотели его открыть

Недавно ученые из коллаборации ATLAS опубликовали результаты поиска двух новых бозонов Хиггса – X и S – которые могли бы взаимодействовать с бозоном Хиггса стандартной модели (H). Предполагается, что S-бозон распадается на b-кварки, тогда как H-бозон распадается на фотоны.

Таким образом, неизменные массы этих продуктов распада могут быть использованы для восстановления масс соответствующих бозонов, – пишут авторы научной работы.

Поскольку физики не знают масс гипотетических бозонов Хиггса, они прибегли к помощи параметризованной нейронной сеть (PNN) – этот метод позволил им не только изучить диапазон масс X и S с высокой степенью детализации, но и получить четкое представление о массах новых бозонов, если они будут обнаружены.

Симметрия и новые эксперименты. Локальное наблюдаемое значение превышения фоновых процессов стандартной модели в зависимости от масс (m_X, m_S). Изображение: ATLAS Collaboration/CERN. Фото.

Локальное наблюдаемое значение превышения фоновых процессов стандартной модели в зависимости от масс (m_X, m_S). Изображение: ATLAS Collaboration/CERN

Безусловно, все вышеописанное крайне сложно, однако, заглядывая в будущее
можно сказать, что модели, исследованные в новом анализе, остаются многообещающими возможностями для раскрытия новых физических явлений, выходящих за рамки Стандартной модели. Данные, собранные во время третьего запуска БАК, и дальнейшая работа коллайдера прольют еще больше света как на бозоны Хиггса, так и на тайны Вселенной.

Физики работают над новой теорией гравитации – какую роль в ней играет темная материя?

Физики работают над новой теорией гравитации – какую роль в ней играет темная материя? Может ли новая теория гравитации ответить на величайшие загадки космологии? Фото.

Может ли новая теория гравитации ответить на величайшие загадки космологии?

История человечества – настоящая сага с множеством действующих лиц. Веками мы ищем ответы на вопросы о том, кто мы, откуда пришли и куда движемся. По мере развития науки и технологий вопросов стало больше но и узнали мы немало. Оказалось, что наша планета – крошечная голубая точка, вращающаяся вокруг самой обычной звезды, коих не счесть на просторах Вселенной. И чем больше мы узнаем о небесных объектах и устройстве космоса, тем меньше понимаем происходящее. Так, две ведущие физические теории – общая теория относительности (ОТО) и квантовая механика – идеально работают по-отдельности, но вместе – нет. Более того, мы изучаем далекие галактики в попытках понять устройство мироздания и вводим разные переменные, например, темную материю, призванную объяснить величайшие загадки. Вот только доказательств ее существования по-прежнему нет, как нет и новой физической теории. Но почему и стоит ли ожидать революции в космологии? Давайте разбираться!

Что не так с космологией?

О том, что космология находится в кризисе, кажется, знают все. Причина кроется в несоответствии постоянной Хаббла. Это означает, что либо ученые делают что-то не так, либо на просторах Вселенной происходит нечто неведомое.

Постоянная Хаббла – число, которое астрономы используют для измерения расширения Вселенной. Впервые о нем сообщил американский астроном Эдвин Хаббл, который обнаружил другие галактики за пределами Млечного Пути и пришел к выводу, что они постоянно удаляются от нас. Однако скорость, с которой это происходит (и почему) – загадка. Да что уж там, каждый раз изучая вращение далеких галактик ученые приходят в недоумении.

Что не так с космологией? Наша Вселенная расширяется с ускорением, что на самом деле довольно странно. Фото.

Наша Вселенная расширяется с ускорением, что на самом деле довольно странно

Дело вот в чем – звезды внутри галактик удерживаются вместе гравитацией – силой тяжести которая предотвращает их выброс в межгалактическое пространство при вращении. Загадка же кроется в том, что самые удаленные части галактик движутся слишком быстро при этом не теряя звезд. Тот факт, что светила не выбрасываются в межзвездное пространство поражает астроном и является одной из величайших космологических загадок. Какая-то сила, должно быть, удерживает галактики вместе, но что это за сила и откуда она берется неизвестно.

Вам будет интересно: Могут ли гравитационные волны разрешить кризис космологии?

На данный момент лучшее объяснение происходящему звучит так – темная материя, оказывающая гравитационное воздействие на все небесные тела. Поиск этой таинственной материи является одним из ведущих направлений исследований, но несмотря на годы изучения и достижения, обнаружить доказательства существования темной материи до сих пор не удалось.

Новые идеи

К счастью, исследователи смотрят в разных направлениях – пока одни занимаются темной материей, другие ищут альтернативные причины наблюдаемых космологических «проблем». Так, еще в 1980-х годах физик по имени Мордехай Милгром предположил, что в галактическом масштабе законы движения Ньютона могут незначительно отличаться от тех, которые наблюдаются на Земле.

По Милгрому, эта модифицированная ньютоновская динамика (MOND), может обеспечить дополнительную гравитационную силу, удерживающую галактики вместе. Но, как и в случае с темной материей, свидетельств в поддержку этой идеи крайне мало.

Новые идеи. Астрономы склоняются в пользу идеи темной материи. Но что, если они ошибаются? Фото.

Астрономы склоняются в пользу идеи темной материи. Но что, если они ошибаются?

Различные исследования рассматривали то, какое влияние MOND может оказывать на орбиты удаленных объектов, таких как Плутон или космические аппараты «Пионер» и «Вояджер», но обнадеживающих результатов не последовало. Более того, многим астрономам эта идея не нравится, так как представляет собой, по сути, произвольную интерпретацию ньютоновской динамики (собственно вот она – причина повсеместного интереса к темной материи).

Еще больше интересных статей в области космологии и физики читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

Теперь же, ситуация может измениться – все благодаря работе Джонатана Оппенгейма и Андреа Руссо из Университетского колледжа Лондона, которые выяснили, почему идея MOND Милгрома все-таки может быть верной. Работа, пока что не прошедшая экспертной оценки, дает MOND теоретическую основу, которая повышает привлекательность теории для астрономов и физиков.

Хорошо забытое старое

Исследование, опубликованное на сервере препринтов AiRXiv, основано на идее, которую Оппенгейм выдвинул несколько лет назад, чтобы примирить несовместимость между двумя великими основами современной физики: квантовой механикой и общей теорией относительности. Напомним, что квантовая механика объясняет устройство Вселенной в мельчайших масштабах, в то время как ОТО – в самых больших масштабах.

И, как мы уже не раз рассказывали, характер обеих теорий совершенно противоположен: квантовая механика предполагает, что Вселенная вероятностна по своей природе, в то время как ОТО подразумевает, что она полностью классическая. Эта несостыковка создает дилемму, когда дело доходит до создания теории квантовой гравитации, которую физикам только предстоит разработать.

Хорошо забытое старое. Квантовая гравитация — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия. Фото.

Квантовая гравитация — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия.

Подробнее о квантовой гравитации мы рассказывали здесь, не пропустите!

Идея Оппенгейма в том, что ОТО – классическая теория, но в своей основе, однако, стохастическая – то есть имеет случайный характер, скорее похожий на броуновское движение – случайное движение частицы, взвешенной в жидкости. Такое видение позволяет объединить квантовую механику и теорию относительности математически совместимым образом.

Из этого «хорошо забытого» подхода также следует, что гравитация для нас с вами работает именно так, как описал Ньютон (и как наблюдают физики). А вот в галактических масштабах ускорение, обусловленное гравитацией, может изменяться на небольшую, но случайную величину, как если бы пространство-время вызывало какое-то броуновское движение масс внутри него.

Хорошо забытое старое. Мы, возможно, неправильно понимаем гравитацию – главную движущую силу Вселенной. Фото.

Мы, возможно, неправильно понимаем гравитацию – главную движущую силу Вселенной

Мы показываем, что стохастическая природа пространства-времени порождает дополнительную гравитационную силу, удерживающую галактики вместе. Энтропия, управляемая стохастической космологической постоянной, может объяснить кривые вращения галактик, а значит привлекать темную материю не нужно, – пишут авторы научной работы.

Темная материя больше не нужна?

Идея Милгрома (и авторов нового исследования) может оказаться необходимым следствием объединения теории относительности и квантовой механики в единую структуру. Как минимум эту идею следует рассмотреть всерьез и провести ряд научных экспериментов, проверяющих природу ньютоновской динамики.

Авторы работы, все же, призывают быть осторожными, указывая, что помимо вращения галактик есть и другие причины предполагать существование темной материи. Например, гравитационная масса далеких галактик действует подобно линзе, преломляя проходящий мимо свет. И размер этого изгиба предполагает, что темная материя должна вносить свой вклад в эту массу.

Темная материя больше не нужна? Физики применяют широкий спектр подходов к очень сложным проблемам, таким как объединение квантовой механики с гравитацией. И это – очень хорошо. Фото.

Физики применяют широкий спектр подходов к очень сложным проблемам, таким как объединение квантовой механики с гравитацией. И это – очень хорошо

Таким образом, прежде чем новая, альтернативная идея получит распространение, ее необходимо тщательно и подробно изучить, в частности, путем компьютерного моделирования броуновского движения пространства-времени и его влияния на массу. Ну а речь о полном отказе от темной материи не идет и вовсе.

Читайте также: Астрофизики обнаружили «мосты» из темной материи. Что это такое?

Выходит, у астрономов прибавилось работы, ведь помимо поисков темной материи как в космосе, так и на Земле, внимание придется уделить и идее Милгрома. Но именно так работает наука – чем более открыто и непредвзято мы смотрим на Вселенную, тем больше шансов узнать еще несколько ее тайн.

Почему не взорвались бутылки с шампанским на борту затонувшего “Титаника”

Почему не взорвались бутылки с шампанским на борту затонувшего “Титаника”. Археологи часто находят рядом с затонувшими кораблями бутылки с шампанским. Фото.

Археологи часто находят рядом с затонувшими кораблями бутылки с шампанским

После трагического случая с подводным аппаратом “Титан”, произошедшим в июне 2023 года когда команда пыталась погрузиться к месту крушения “Титаника”, многих заинтересовало такое явление, как имплозия, или взрыв направленный внутрь. Напомним, что батискаф “Титан” не выдержал колоссального давления на большой глубине, в результате чего его стенки просто схлопнулись, несмотря на то, что были выполнены из титана, и изначально создавались для погружения на большую глубину. Но почему в таком случае не взорвались бутылки с шампанским, обнаруженные исследователями на дне рядом с останками корабля, неужели стекло бутылки прочнее титановых стенок батискафа?

Почему некоторые предметы не взрываются на большой глубине

Имплозия возникает при большой разнице между внутренним и внешним давлением, если стенки не в состоянии выдержать это давление. Сильный взрыв попросту уравнивает давление внутри и снаружи, в результате чего стенки схлопываются, как это произошло с “Титаном”. Надо сказать, что Имплозия может произойти не только в воде на большой глубине, но и на поверхности. Например, это нередко происходит с цистернами, когда давление в них становится сильно ниже атмосферного.

Отсюда следует, что имплозия может не произойти только в двух случаях — если давление внутри и снаружи выровняется в результате разгерметизации, как это произошло с самим “Титаником”, либо стенки способны выдержать внешнее давление, как у надежных батискафов, которые опускаются на большую глубину. И это правило распространяется абсолютно на все предметы, в том числе и бутылки с шампанским.

Почему некоторые предметы не взрываются на большой глубине. Бутылки с шампанским, обнаруженные на дне рядом с затонувшим «Титаником». Фото.

Бутылки с шампанским, обнаруженные на дне рядом с затонувшим «Титаником»

Почему на большой глубине не взорвались

Бутылки часто находят невредимыми на дне возле потерпевших крушение кораблей. Например, шампанское доставали с глубины 50 метров, и оно было вполне пригодным для питья. Но в чем секрет? Во-первых, в бутылке с шампанском изначально давление выше атмосферного, причем существенно — оно достигает 6 бар, то есть шести атмосферных давлений. Кроме того, шампанское разливают в прочные бутылки, которые выдерживают давление до 20 бар.

Это позволяет шампанскому выдерживать глубину в сотни метров. Причем только на глубине около 60 метров давление снаружи и внутри бутылки выравнивается, соответственно ей в таких условиях вообще ничего не угрожает. В эксперименте на видео ниже, бутылка с шампанским выдержала давление, которое возникает на глубине 1940 метров, а «на глубине» примерно 1950 метров бутылка взорвалась. Но “Титаник”, как известно, находится на глубине 3800 метров. Это значит, что давление на дне составляет 381 бар.

Версию о том, что в XIX веке делали сверхпрочные бутылки, способные выдержать подобное давление, отбросим сразу. Если раньше бутылки и были прочнее, то не до такой степени. Но даже если представить, что стекло способно выдержать давление на глубине почти 4 км, пробку от бутылки просто вдавило бы внутрь. Причем это произошло бы до того, как бутылка оказалась на дне.

Если стекло и пробка не способны выдержать такое давление, остается только один вариант — бутылка разгерметизировалась, и вода попала внутрь, в результате чего давление снаружи и внутри выровнялось. Если обратить внимание на пробку бутылки на фото, вы заметите, что она сильно деформирована и повреждена. Очевидно, в этом и заключается весь секрет — бутылка была разгерметизирована по мере погружения на дно. В противном бы случае с ней произошло то же самое, что и с бутылкой во время эксперимента на видео.

Почему на большой глубине не взорвались. Неоткрытая бутылка с шампанским, найденная на месте крушения «Титаника». Фото.

Неоткрытая бутылка с шампанским, найденная на месте крушения «Титаника»

Правда, во время эксперимента обе бутылки взорвались, так как пробки обеспечивали герметичность. Однако во время второго эксперимента, когда бутылка взорвалась, пробка резко сжалась, так как давление начало на нее воздействовать со всех сторон, но затем она быстро приняла свой нормальный объем, так как ячейки в пористой структуре пробки разгерметизировались.

Переходите по ссылке на наш ДЗЕН КАНАЛ. Мы подготовили для вас множество интересных, захватывающих материалов, посвященных науке.

Напоследок напомним, что не все бутылки с “Титаника” утонули. Одна достигла берега Канады спустя более 100 лет после крушения корабля. Речь о бутылке с запиской, написанной 12-летней девочкой Матильдой Лефевр, которая в итоге погибла. Подробнее почитать об этой записке можно по ссылке.

Может ли взрыв атомной бомбы поджечь атмосферу Земли

Может ли взрыв атомной бомбы поджечь атмосферу Земли. Создатели ядерного оружия опасались, что взрыв может пожечь атмосферу Земли. Фото.

Создатели ядерного оружия опасались, что взрыв может пожечь атмосферу Земли

В августе 1942 года в США был запущен «Манхэттенский проект» — программа, в ходе которой ученые пытались разработать ядерное оружие. В рамках проекта участникам удалось создать три атомные бомбы. Первой стала плутониевая «Штучка», которая была взорвана в ходе испытания 1945 года в американском штате Нью-Мексико. Вторая бомба получила название «Малыш» и в том же году была сброшена на Хиросиму. Третьей бомбой стал «Толстяк», сброшенный на японский Нагасаки. Создателем ядерного оружия считается американский физик-теоретик Роберт Оппенгеймер, о котором в 2023 году вышел одноименный фильм. Во время разработки он и его коллеги очень беспокоились о потенциальных ужасах, которое может повлечь их изобретение. Например, они опасались, что взрыв атомной бомбы может поджечь атмосферу Земли и моментально уничтожить человечество.

Интересный факт: в Манхэттенском проекте приняло участие более 130 000 человек. Стоимость разработки ядерного оружия составила примерно 2 миллиарда долларов США. Исследование и производство велось на территории более 30 площадок в США, Великобритании и Канаде. Первые в истории человечества образцы ядерного оружия были созданы менее чем за три года работы.

Термоядерный синтез в атмосфере Земли

По данным научного издания IFL Science, первые опасения насчет того, что ядерный взрыв может поджечь атмосферу Земли, возникли у ученых задолго до первых испытаний. В 1942 году американский физик-теоретик Эдвард Теллер предположил, что в результате взрыва на небе может возникнуть термоядерный синтез, который происходит внутри Солнца.

Термоядерный синтез в атмосфере Земли. Американский ученый Эдвард Теллер. Фото.

Американский ученый Эдвард Теллер

Термоядерный синтез внутри Солнца — это процесс, при котором атомы водорода объединяются, создавая гелий и высвобождая огромное количество энергии. Ученый опасался, что при взрыве мощной бомбы за счет деления ядер атомов, атмосфера может сильно нагреться. По его мнению, температура могла оказаться настолько высокой, что привести к слиянию ядер изотопа азота-14 друг с другом. Или же, они могли объединиться с другими легкими изотопами вроде водорода-1, углерода-12 или кислорода-16.

Читайте также: Что такое договор о контроле над ядерным оружием и в чем его суть

Может ли атмосфера Земли сгореть

Такие же опасения были и у Роберта Оппенгеймера. Согласно историческим документам, в 1942 году он обсудил этот вопрос с экспертом по радиационной физике Артуром Комптоном. Подробности об этом разговоре были раскрыты в 1959 году — ученые пришли к выводу, что в результате взрыва действительно может произойти термоядерный синтез. Причиной его начала могла быть высокая температура, выделяемая при взрыве бомбы. Также исследователи не исключили, что в взрывная реакция могла произойти даже в океане, потому что в нем растворено много водорода.

Может ли атмосфера Земли сгореть. «Отец атомной бомбы» Роберт Оппенгеймер. Фото.

«Отец атомной бомбы» Роберт Оппенгеймер

Однако в отчете, который был рассекречен в 1979 году, упомянутый выше Эдвард Теллер все же пришел к выводу, что ядерный взрыв не сможет ни поджечь атмосферу, ни вызвать взрыв океана. Действительно, в процессе взрыва ядерной бомбы выделяется много энергии в виде света и тепла. Однако, большая ее часть теряется в пространстве — ее не хватает для поджигания атмосферы Земли. По крайней мере бомбам, которые существовали в 1950-е годы, мощности для этого точно не хватало.

Может ли атмосфера Земли сгореть. Взрыв атомной бомбы «Штучка». Фото.

Взрыв атомной бомбы «Штучка»

Последствия ядерного взрыва

То, что ядерный взрыв не может поджечь атмосферу, было подтверждено в рамках испытаний. Однако, использование такого оружия ведет за собой огромное количество разрушений и смертей. При взрыве образуется мощная ударная волна, которая способна сравнять с землей все постройки в радиусе нескольких километров. Также при взрыве выделяется тепловое излучение, которое вызывает пожары и буквально заживо сжигает людей и животных. Не стоит забывать и про радиационные последствия — радиация вызывает лучевую болезнь, и даже выжившие люди впоследствии быстро умирают. Наконец, ядерный взрыв может поднять в воздух много пыли и грязи, из-за чего может начаться ядерная зима.

Последствия ядерного взрыва. Последствия взрыва ядерной бомбы. Фото.

Последствия взрыва ядерной бомбы

Обязательно подпишитесь на нас в Дзене. Так вы не пропустите ничего интересного!

В начале статьи мы упомянули про фильм «Оппенгеймер». Если вы еще не смотрели эту биографическую драму, самое время заняться этим — недавно моя коллега Любовь Соковикова подробно рассказала, почему этот фильм должен посмотреть каждый. Также на нашем сайте есть статья «5 впечатляющих фактов о фильме “Оппенгеймер”» , в котором мы объяснили, почему там много черно-белых сцен, и какие эмоции он оставляет после просмотра. Настоятельно рекомендуем!

Главные научные открытия 2023 года по версии Hi-News.ru

Главные научные открытия 2023 года по версии Hi-News.ru. Наука не стоит на месте и 2023 год вновь это доказал. Фото.

Наука не стоит на месте и 2023 год вновь это доказал

2023 год можно назвать годом перемен – пандемия COVID-19 закончилась, Индия стала самой густонаселенной страной мира, а искусственный интеллект захватил нашу жизнь (и стал похож на ИИ из научно-фантастических фильмов). В это же время вооруженные военные конфликты обострились, климатические изменения усилились, а угроза ядерной войны вновь напомнила о себе. Словом, год выдался непростой, однако ученые совершили огромное количество открытий, многие из которых навсегда изменят повседневную жизнь. Чего стоит одна только Нобелевская премия по химии за новаторское открытие в области нанотехнологий, а физики и вовсе пролили свет на движение электронов внутри атомов и молекул. В ударе были и астрономы, которые обнаружили низкочастотные гравитационные волны, а нейробиологи и вовсе создали устройство, переводящее мысли в текст. Рассказываем какие открытия, по мнению редакции Hi-News.ru, стали самыми выдающимися за прошедший год!

Открытие новых миров

В очередной звездный для науки год астрономы обнародовали новые открытия о космосе, а число открытых экзопланет – миров, за пределами Солнечной системы – перевалило за 5500, среди которых есть те, которые мы раньше не видели. Так, космическая обсерватория Джеймса Уэбба подтвердила присутствие тяжелых элементов — углерода и кислорода — в атмосфере далекой экзопланеты HD149026b, более известной как Смертриос.

Для астрономов это открытие стало неожиданностью, поскольку газовые гиганты в нашей Солнечной системе, такие как Юпитер и Сатурн, содержат в своей атмосфере только водород и гелий. Общее правило таково: чем больше планета, тем меньше тяжелых элементов в ее атмосфере. Открытие перевернуло эту идею с ног на голову.

Открытие новых миров. Смертриос — экзопланета у звезды HD 149026, находящаяся на расстоянии приблизительно 257 световых лет от Солнца в созвездии Геркулеса. Фото.

Смертриос — экзопланета у звезды HD 149026, находящаяся на расстоянии приблизительно 257 световых лет от Солнца в созвездии Геркулеса.

Читайте также: Ученые НАСА обнаружили экзопланету с большим количеством метана

Список экзопланет также пополнился миром, который, по словам некоторых исследователей, не должен существовать. Речь идет о планете под названием LTT9779 b, которая отражает около 80% света, падающего на нее от звезды, вокруг которой она вращается.

Эту «зеркальную планету» окутывают металлические облака, которые состоят в основном из силиката (то есть песка и стекла) и титана. На сегодняшний день LTT9779 b является единственной в своем роде.

Открытие новых миров. Далекая планета под названием LTT9779 b отражает 80% света своей звезды, что делает странный мир с металлическими облаками самым большим известным «зеркалом» во Вселенной. Год в этом зеркальном мире длится всего 19 часов. Фото.

Далекая планета под названием LTT9779 b отражает 80% света своей звезды, что делает странный мир с металлическими облаками самым большим известным «зеркалом» во Вселенной. Год в этом зеркальном мире длится всего 19 часов.

Еще одним впечатляющим открытием стала планета K2-18b, на которой обнаружены признаки существования жизни. И хотя мир, расположенный на расстоянии 110 световых лет от Солнца, был открыт еще в 2015 году, признаки жизни удалось уловить только в 2023 году.

Считается, что K2-18b полностью покрыта водой, в которой могут плавать микроскопичнеские организмы.

Революция в космологии

В 2023 году исследователи сообщили об открытии низкочастотных гравитационных волн, пронизывающих Вселенную. Напомним, что гравитационные волны, существование которых предсказал Альберт Эйнштейн, удалось зафиксировать в 2015 с помощью американской лазерной интерферометрической гравитационно-волновой обсерватории (LIGO) и европейской обсерватории VIRGO. С тех пор было обнаружено около 100 других гравитационно-волновых сигналов.

В ушедшем году эксперты коллаборации NANOGrav сообщили об обнаружении так называемых стахатических (или низкочастотных) гравитационных волн. Их источником предположительно могут быть медленно сближающиеся пары сверхмассивных черных дыр, космические струны и космологические фазовые переходы.

Революция в космологии. Наиболее трудными для обнаружения считаются стохастические гравитационные волны, исходящие от менее массивных объектов и «окутывающих» нашу планету со всех сторон по всей Вселенной. Фото.

Наиболее трудными для обнаружения считаются стохастические гравитационные волны, исходящие от менее массивных объектов и «окутывающих» нашу планету со всех сторон по всей Вселенной.

Хотите всегда быть в курсе последних открытий в области науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Обнаружить эту стохатическую ряб пространства-времени удалось с помощью миллисекундных пульсаров – звезд, с периодом вращения в диапазоне от 1 до 10 миллисекунд, расположенных по всему Млечному Пути. Это открытие можно назвать огромным и революционным успехом.

Во-первых, теперь мы точно знаем, что само пространство-время заполнено низкочастотными гравитационными волнами, а во-вторых сможем понять как формируются структуры в космосе (уже в самом ближайшем будущем).

Революция в космологии. Сказать, что мы хоть что-то знаем про космос, будет очень самонадеянно. Фото.

Сказать, что мы хоть что-то знаем про космос, будет очень самонадеянно.

Полученные данные также означают, что в ранней Вселенной было гораздо больше гигантских черных дыр, чем считалось ранее, а дальнейшее изучение нового типа гравитационных волн может раскрыть детали происхождения Вселенной и объяснить невидимые силы, питающие темные космический океан.

Не пропустите: Необычное открытие доказало, что Вселенная расширяется не так, как мы думали

«Новая физика» – редкий распад бозона Хиггса

Вы наверняка слышали о «новой физике», приход которой знаменует собой крах Стандартной модели, описывающей электромагнитное, слабое и сильное взаимодействие всех известных элементарных частиц. Отметим, что революции в физике говорят уже много лет, а в январе 2021 года ученые доказали существование энионов – третьего царства частиц. Последующие открытия также подтвердили существование неизвестных для науки элементарных частиц, взаимодействие между которыми необходимы для эволюции и при роды Вселенной.

2023 год не стал исключением и в этом плане. Так, одним из важнейших открытий в области физики стало свидетельство редкого распада бозона Хиггса – знаменитой «частицы Бога», о существовании которой мир узнал в 2012 году. Напомним, что бозон Хиггса отвечает за механизм появления масс у некоторых элементарных частиц и – главное – подтверждает правильность Стандартной модели.

«Новая физика» – редкий распад бозона Хиггса. Первое свидетельство редкого распада бозона Хиггса является косвенным доказательством существования частиц, выходящих за рамки Стандартной модели. Фото.

Первое свидетельство редкого распада бозона Хиггса является косвенным доказательством существования частиц, выходящих за рамки Стандартной модели.

Самое поразительное в этом открытие то, что зафиксированный редкий распад выходит за рамки той самой Стандартной модели и является косвенным доказательством существования неизвестных науке элементарных частиц. Дальнейшие эксперименты запланированы на 2029 год, а значит наше представление о мироздании (как и вся современная физика с ее противоречиями и загадками) уже в самом скором будущем могут измениться.

Вам будет интересно: Обнаружены новые элементарные частицы. Почему это важно?

Самый жаркий год за всю историю наблюдений

Несмотря на то, что ученые много лет говорят о последствиях климатических изменений, именно 2023 год показал какими суровыми они могут быть. Так, температура в июле стала самой высокой не только за всю историю наблюдений, но и за последние 100 тысяч лет. Более того, данные научных исследований свидетельствуют об ускоренном таянии ледников и вечной мерзлоты.

Количество экстремальных погодных явлений в прошлом году заставило задуматься об изменении климата даже тех, кто никогда им не интересовался – в сентябре, например, на Ливию и Азию обрушились тайфуны и наводнения, а лесные пожары в Канаде и на гавайском острове Мауи стали самыми смертоносными за последние сотню лет.

Самый жаркий год за всю историю наблюдений. 2023 год побил все мыслимые и немыслимые температурные рекорды. Фото.

2023 год побил все мыслимые и немыслимые температурные рекорды

Читайте также: Землю начинает трясти из-за глобального потепления климата

Наша страна также не стала исключением – в июне температура в Сибири на протяжении двух недель достигала 40°C, а 2024 год для Москвы и Санкт-Петербурга также начался с рекордов, правда на этот раз речь идет о минусовых температурах.

Искусственный интеллект изменил мир

По данным портала «Грамота.ру» словом 2023 года стало существительное «нейросеть». Выбор, как отмечают специалисты, был сделан на основе сбалансированных критериев – анализа больших данных, частотности запросов, оценки ведущих экспертов: лингвистов, социологов и других экспертов. И да, вряд ли кто-то сильно этому удивлен.

Как бы не ходили вокруг да около, но главным прорывом (открытием, достижением, сенсацией – как угодно) действительно стали системы Искусственного интеллекта или же просто нейросети – системы, принимающие огромные объемы данных, ищущие в них закономерности и генерирующие статистически вероятные результаты. И да, они все больше и больше напоминают поведение человека (хотя по-прежнему очень далеки от нас).

Искусственный интеллект изменил мир. Нейронная сеть — это система искусственного интеллекта, котор учит компьютеры обрабатывать данные способом, вдохновленным человеческим мозгом. Фото.

Нейронная сеть — это система искусственного интеллекта, котор учит компьютеры обрабатывать данные способом, вдохновленным человеческим мозгом.

Подробнее по теме: В чем искусственный интеллект лучше людей в 2023 году

Как и другие технологии, ИИ-системы меняют общество и его устройство. Как подчеркивают авторы ежегодного доклада AI Index Report 2023, искусственный интеллект в ушедшем году вступил в новую фазу своего развития, а внедрение этой технологии, наравне с рисками и возможностями, находятся в руках корпоративных компаний. Так или иначе за небольшой промежуток времени нейросети оказали существенное влияние на мировую экономику, образование и рынок труда.

К счастью, общество довольно быстро адаптировалось к этой технологической инновацией, а разговоры о том, не уничтожит ли это чудо 21 века человеческую цивилизацию не утихали на протяжении всего года. И, к слову, как бы скептически к подобным речам мы не относились, риски, связанные с ИИ действительно стоят внимания.

Читайте также: Как нейросети влияют на климат и окружающую среду?

Новые методы лечения болезни Альцгеймера

Ранее мы рассказывали, что болезнь Альцгеймера может поражать даже 19-летних. Что поразительно, так как Альцгеймер — самая распространенная неизлечимая форма деменции, при которой мозг человека начинает разрушаться, а лекарства от недуга не существует. В прошлом для лечения болезни применялось несколько препаратов, которые не прошли клинических испытаний, но в июле 2023 года исследователи сообщили об изобретении нового препарата под названием .

Leqembi – первый в своем роде препарат, который замедляет снижение когнитивных функций у пациентов с ранней стадией болезни Альцгеймера. Производят лекарство такие фармацевтические компании как Eisai и Biogen.

Новые методы лечения болезни Альцгеймера. Болезнь Альцгеймера — одна из самых страшных заболеваний в мире, против которой у ученых все еще нет эффективного лекарства. Фото.

Болезнь Альцгеймера — одна из самых страшных заболеваний в мире, против которой у ученых все еще нет эффективного лекарства.

Препарат воздействует на бета-амилоид – основной компонент амилоидных бляшек, обнаруживаемых в мозге пациентов с болезнью Альцгеймера и влияющих на память и мышление. Разработанное лекарство «помечает» бляшки для очистки иммунной системой организма, что замедляет симптомы болезни Альцгеймера. Словом, это крайне важная веха в лечении болезни.

Не пропустите: Ученые смогли превратить мутировавшие раковые клетки в здоровые

Еще одним знаменательным собтием, связанным с болезнью Альцгеймера, стало открытие редкой генетической мутации, защищающей от этого недуга. Мутация, выявленная учеными, передается по наследству. И хотя мы по-прежнему далеки от лечения опасных нейродегенеративных заболеваний, подобных болезни Альцгеймера, открытия 2023 года приближают нас к созданию универсального лекарства и метода лечения. Это означает, что в будущем миллионы людей не будут страдать от деменции.

Нобелевская премия 2023: квантовые точки, м-РНК вакцины и аттосекунды

Нобелевская премия 2023: квантовые точки, м-РНК вакцины и аттосекунды. Ежегодно присуждается шесть Нобелевских премий, каждая из которых признает новаторский вклад отдельного человека или организации в определенной области. Фото.

Ежегодно присуждается шесть Нобелевских премий, каждая из которых признает новаторский вклад отдельного человека или организации в определенной области.

Каждый октябрь Шведская королевская академия наук называет лауреатов премий в различных областях науки, включая литературу и экономику. В этом году победители были объявлены в период со 2 по 9 октября, а отмеченные наградами научные открытия поражают воображение. Судите сами: работа лауреатов Нобелевской премии по физике буквально проливает свет на движение электронов внутри атомов и молекул, что ранее считалось невозможным, а премия по химии присуждена за создание настолько малых частиц, что их свойства определяются квантовыми явлениями. И, конечно, не обошлось без COVID-19 – премия по физиологии и медицине досталась ученым, чьи исследования позволили разработать эффективные мРНК-вакцины против коронавирусной инфекции. В этой статье рассказываем обо всех лауреатах Нобелевской премии 2023 года.

Кто и когда присуждает Нобелевскую премию?

Ежегодно, начиная с 10 декабря 1901 года, Шведская королевская академия наук присуждает шесть Нобелевских премий, каждая из которых признает новаторский вклад отдельного человека или организации в определенной научной области. Премии присуждаются за достижения в области физиологии и медицины, физики, химии, экономических наук, литературы и миротворческой деятельности.

Лауреаты традиционно получают диплом о присуждении Нобелевской премии, медаль и документ с подробным описанием премиальной суммы, которая в 2023 году составляет 11 миллионов шведских крон, или около одного миллиона долларов. Церемония награждения победителей пройдет в Стокгольме в декабре.

Кто и когда присуждает Нобелевскую премию? Со 2 по 9 октября в Стокгольме и Осло называют имена новых обладателей Нобелевских премий. Фото.

Со 2 по 9 октября в Стокгольме и Осло называют имена новых обладателей Нобелевских премий.

Подробнее о том, как и когда появилась Нобелевская премия мы рассказывали ранее, рекомендуем к прочтению!

Напомним, что в 2022 году лауретами Нобелевской премии стали физики Ален Аспе, Джон Клаузер и Антон Цайлингер, которые удостоились награды за эксперименты по квантовой запутанности. Их открытия, по мнению представителей Нобелевского комитета, в будущем могут привести к созданию квантовой телепортации.

Нобелевская премия по физиологии и медицине

В мае 2023 года Всемирная организация здравоохранения объявила об окончании пандемии COVID-19, которая бушевала три года и унесла почти 7 миллионов жизней. Несмотря на чрезвычайную ситуацию в области здравоохранения, скорость разработки вакцин против коронавирусной инфекции стала беспрецедентной.

На момент написания этой статьи было введено более 13,5 миллиардов доз вакцин против COVID-19, а более 70% населения земного шара получило по крайней мере одну дозу. Учитывая проделанную исследователями работу, Нобелевский комитет присудил премию по физиологии и медицине ученым, чьи открытия привели к разработке мРНК вакцин Pfizer-BioNTech и Moderna.

Нобелевская премия по физиологии и медицине. Награду за открытие в области медицины и физиологии присудили биохимикам Каталин Карико (Венгрия) и Дрю Вайсману (США) за работу по модификации нуклеозидных оснований. Фото.

Награду за открытие в области медицины и физиологии присудили биохимикам Каталин Карико (Венгрия) и Дрю Вайсману (США) за работу по модификации нуклеозидных оснований.

Больше по теме: Мифы и факты о вакцинации против COVID-19. Разбираем на пальцах

Напомним, что вакцины, созданные на основе мРНК, содержат в своем составе матричную (информационную) рибонуклеиновую кислоту (РНК). После инъекции клетки организма поглощают вакцину, однако в ядро клетки (где содержится ДНК), она не проникает. Некоторые исследователи считают, что именно мРНК вакцины могут помочь в изготовлении вакцин против других смертельных болезней.

Лауреатами Нобелевской премии по физиологии и медицине 2023 стали венгерский ученый Каталин Карико и ее коллега из США Дрю Вайсман. Исследователи встретились в 1998 году и с тех пор работают вместе.

В 2005 году Карико и Вайсман начали работу по «модификации нуклеозидных оснований», которые не дают иммунной системе запускать воспалительную реакцию на мРНК лабораторного происхождения. Именно это открытие имело решающее значение для разработки эффективной мРНК вакцины против COVID-19.

Нобелевская премия по физике

В этом году внимание Нобелевского комитета привлекли трое Пьер Агостини, Ференц Крауш и Энн Л’Улье, которые буквально пролили свет на движение электронов внутри атомов и молекул, что ранее считалось невозможным. На сайте Нобелевского комитета говорится, что исследователи удостоились премии «за экспериментальные методы, генерирующие аттосекундные импульсы света для изучения динамики электронов в веществе».

Эта хитрая формулировка означает, что эксперименты, проведенные физиками, позволили получить невероятно короткие световые импульсы, измеряемые в аттосекундах, тем самым продемонстрировав, что эти импульсы можно использовать для получения изображений процессов внутри атомов и молекул. Впервые в истории.

Нобелевская премия по физике. В будущем станет легче обнаруживать следы болезней благодаря работе трех лауреатов Нобелевской премии по физике. Фото.

В будущем станет легче обнаруживать следы болезней благодаря работе трех лауреатов Нобелевской премии по физике.

Аттосекунда — это одна квинтиллионная (1: 1.000.000.000.000.000.000) доля секунды. Чтобы ее получить, нужно сначала разделить секунду на миллион частей, затем еще на миллион, и потом – еще раз.

Представители Нобелевского комитета отмечают, что в будущем исследования Пьера Агостини из университета Огайо, Ференца Крауза из Института Макса Планка и Анн Л’Юйе из Лундского университета, помогут создать инструмент для обнаружения болезнетворных молекул в образцах крови. «Способность генерировать аттосекундные импульсы света открывает дверь в крошечный, чрезвычайно крошечный масштаб времени и мир электронов», – сказала Ева Олссон из Комитета по отбору лауреатов Нобелевской премии по физике.

Нобелевская премия по химии

Лауреаты Нобелевской премии по химии 2023 года отмечены Шведской королевской академией наук за новаторскую работу в области нанотехнологий, а именно «за открытие и синтез квантовых точек – частиц настолько малых, что их свойства определяются квантовыми явлениями». Это означает, что квантовые точки (наночастицы) настолько малы, что их размер определяет их свойства. Премия присуждена химикам Мунги Бавенди, Луиcу Брюсу и Алексею Екимову.

Долгое время никто не думал, что на самом деле можно создать такие маленькие частицы. Но лауреатам 2023 года это, наконец, удалось, – сказал Йохан Оквист, председатель Нобелевского комитета по химии, во время пресс-конференции.

Все началось в 1980-х годах, когда российский химик Алексей Екимов создал зависящие от размера квантовые эффекты в цветном стекле и продемонстрировал, что размер частиц влияет на цвет стекла с помощью квантовых эффектов.

Нобелевская премия по химии. Премия присуждена химикам Мунги Бавенди, Луиcу Брюсу и Алексею Екимову. Фото.

Премия присуждена химикам Мунги Бавенди, Луиcу Брюсу и Алексею Екимову.

Позже Брус стал первым ученым в мире, доказавшим, что зависящие от размера квантовые эффекты в частицах свободно плавают в жидкости. В 1993 году Бавенди произвел революцию в химическом производстве квантовых точек – его методы привели к получению почти идеальных частиц, необходимых для использования в широком спектре применений.

Еще больше интересных статей о последних открытиях в области науки и высоких технологий читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

Отметим, что квантовые точки являются самыми маленькими компонентами нанотехнологий, которые сегодня можно встретить повсюду – от компьютерных мониторов и телевизионных экранов, до биотехнологий и медицины. Так, с помощью квантовых точек хирурги могут составлять подробные карты тканей и эффективно удалять раковые опухоли.

Нобелевская премия по экономике

В этом году премия в области экономических наук памяти Альфреда Нобеля была присуждена профессору Гарвардского университета Клаудии Голдин за “понимание результатов работы женщин на рынке труда”. Голдин представила первый всеобъемлющий отчет о доходах и участии женщин на рынке труда на протяжении веков, собрав данные по США за более чем 200 лет.

Работа Голдин показала, что участие женщин на рынке труда сократилось с началом промышленной революции, а также объяснила сохраняющийся разрыв в доходах между полами, – объясняют представители Нобелевского комитета.

Нобелевская премия по экономике. В 2023 году Нобелевским лауреатом по экономике стала профессор Гарварда и научный сотрудник Национального бюро экономических исследований США Клаудия Голдин. Фото.

В 2023 году Нобелевским лауреатом по экономике стала профессор Гарварда и научный сотрудник Национального бюро экономических исследований США Клаудия Голдин.

Представители Шведской королевской академии наук отмечают, что понимание роли женщин в сфере труда невероятно важно для общества, а новаторское исследование Клаудии Голдин позволяет гораздо больше узнать
о том, какие важные факторы лежат в основе существующего неравенства и как с ним бороться.

Вам будет интересно: Почему не существует Нобелевской премии по математике

Нобелевская премия по литературе

Лауреатом Нобелевской премии по литературе в 2023 году стал Джон Фосс, один из самых известных драматургов в мире. Его разностороннее творчество включает в себя все – от пьес и романов, написанных в сдержанном минималистском стиле, до поэтических сборников, эссе и детских книг. К основным произведениям Фосса относятся романы «Эллинг» (1989) и «Меланхолия» I и II (1995–1996).

Нобелевская премия по литературе. Шведская академия в Стокгольме высоко оценила новаторские пьесы норвежского драматурга. Фото.

Шведская академия в Стокгольме высоко оценила новаторские пьесы норвежского драматурга.

По произведениям норвежского драматурга было поставлено более 1000 различных пьес, а его работы переведены на 40 языков. Член Шведской академии Андерс Олссон сказал, что работа Фоссе «затрагивает самые глубокие чувства, которые только можно испытать«.

Не пропустите: Что такое «Задача трех тел» и почему ее невозможно решить?

Нобелевская премия мира

Лауреатом Нобелевской премии мира 2023 стала иранская активистка и вице-президент правозащитной организации Наргес Мохаммади, заключенная в тюрьму в Тегеране. В сумме Мохаммади проведет в заключении 12 лет. Обладательница Нобелевской премии мира родилась в 1972 году, а правозащитной деятельностью занялась будучи студенткой-физиком. В 2003 году Мохаммади стала сотрудничать с Центром защиты прав человека в Тегеране, основанным лауреатом Нобелевской премии мира Ширин Эбади.

Эта премия – прежде всего признание очень важной работы целого движения в Иране, с его бесспорным лидером Наргес Мохаммади. Только обеспечив равные права для всех, мир сможет достичь братства между нациями, к которому стремился Альфред Нобель, – сказала глава Норвежского Нобелевского комитета Берит Рейсс-Андерсен.

Нобелевская премия мира. Лауреатом Нобелевской премии мира 2023 года стала иранская активистка и вице-президент правозащитной организации Наргиз Мохаммади. Фото.

Лауреатом Нобелевской премии мира 2023 года стала иранская активистка и вице-президент правозащитной организации Наргиз Мохаммади

Это интересно: История создания премии «Оскар»: кто ее придумал и как выбирают победителей?

На сайте Нобелеского комитета говорится, что премия мира 2023 года также присуждается сотням тысяч людей, которые на протяжении последнего года протестовали в Иране против дискриминации женщин. Присуждение премии Наргес Мохаммади следует давней традиции, в соответствии с которой Норвежский Нобелевский комитет присуждает премию мира тем, кто работает над продвижением социальной справедливости и прав человека.

О чем фильм «Оппенгеймер» и почему его должен посмотреть каждый?

О чем фильм «Оппенгеймер» и почему его должен посмотреть каждый? Как пишут СМИ, 5 августа кассовые сборы «Оппенгеймера» преодолели отметку в 500 миллионов долларов по всему миру. Фото.

Как пишут СМИ, 5 августа кассовые сборы «Оппенгеймера» преодолели отметку в 500 миллионов долларов по всему миру.

Менее 80 лет назад в мире не существовало оружия, способного уничтожить всю жизнь на Земле. Создание атомной бомбы повлекло за собой чудовищные последствия, однако общество до сих пор не осознает всю опасность его существования и применения. При этом мы редко задумываемся и о самих создателях оружия Судного дня – что сподвигло эти без преувеличения великие умы создать нечто подобное и как они чувствовали себя осознав, что именно произвели на свет? Американский писатель-фантаст Курт Воннегут одним из первых обратил внимание на этот «гений разума» в знаменитом романе «Колыбель для кошки», пытаясь ответить на вопрос о том, почему ученый Феликс Хонникер использовал силу своего интеллекта для создания страшного оружия, способного уничтожить не только своего создателя, но и все живое? Теперь же ответ на этот вопрос ищет голливудский режиссер Кристофер Нолан в нашумевшем «Оппенгеймере» – фильме об одном из величайший людей в истории человечества.

Джулиус Оппенгеймер является квинтэссенцией исторической фигуры, воплощающей в себе как лучшее, так и худшее из 20-го века. Оппенгеймер – герой и злодей своей собственной истории, а его жизнь простирается гораздо глубже, чем сферы науки и политики.

Краткая история ядерного оружия

Атомная бомба и ядерные взрывные устройства – это мощное оружие, использующее ядерные реакции в качестве источника взрывной энергии. Разработка технологии создания ядерного оружия началась во время Второй мировой войны, а применялись атомные бомбы дважды – в 1945 году Соединенные Штаты нанесли удар на японские города Хиросима и Нагасаки.

Распространение ядерного оружия, несмотря на чудовищные последствия его применения, началось после Второй мировой войны, а в годы холодной войны США и СССР соперничали за превосходство в глобальной гонке ядерных вооружений. Работа над созданием атомного оружия началась в 1942 году в СССР и США.

Краткая история ядерного оружия. Грибовидное облако, появившееся в ходе испытаний ядерной бомбы «Тринити». Фото.

Грибовидное облако, появившееся в ходе испытаний ядерной бомбы «Тринити»

Создание атомного оружия стало возможным благодаря открытию физиков-ядерщиков в Берлинской лаборатории в 1938 году после того, как Отто Хан, Лиза Мейтнер и Фриц Штрассман открыли деление атомных ядер (расщепление ядра). Напомним, что при делении ядро атома радиоактивного материала распадается на два или более меньших ядра, что вызывает внезапное, мощное высвобождение энергии. Открытие ядерного деления позволило создавать ядерные технологии, включая оружие.

Читайте также: Тактическое ядерное оружие — что это такое и в чем его опасность

Атомные бомбы получают свою энергию в результате реакций деления. Термоядерное оружие (или водородные бомбы) основано на сочетании процессов ядерного деления и термоядерного синтеза. Ядерный синтез – это еще один тип реакции, в ходе которой два более легких атома соединяются с выделением энергии.

Манхэттенский проект

28 декабря 1942 года президент США Франклин Рузвельт санкционировал создание Манхэттенского проекта для объединения различных ученых и военных чиновников, занимающихся ядерными исследованиями.

Напомним, что Манхэттенский проект был кодовым названием возглавляемых американцами усилий по разработке функциональной атомной бомбы во время Второй мировой войны. Проект был начат из-за опасений того, что немецкие ученые с 1930-х годов работали над созданием оружия с использованием ядерных технологий.

Манхэттенский проект. «Проект Манхэттен» — кодовое название программы США по разработке ядерного оружия, осуществление которой формально началось 13 августа 1942 года. Фото.

«Проект Манхэттен» — кодовое название программы США по разработке ядерного оружия, осуществление которой формально началось 13 августа 1942 года.

Большая часть работ в рамках Манхэттенского проекта была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж. Роберта Оппенгеймера – “отца атомной бомбы”. 16 июля 1945 года в отдаленном пустынном месте близ Аламогордо, штат Нью—Мексико, была успешно взорвана первая атомная бомба – знаменитое испытание «Тринити».

Это интересно: Что такое договор о контроле над ядерным оружием и в чем его суть

Водородная бомба

Первый успешный запуск атомной бомбы в СССР состоялся 29 августа 1949 года на территории Казахстана. Руководителем проекта был академик Игорь Васильевич Курчатов, который работал на секретном объекте «Арзамас-16» с 1942 года.

Так как создание ядерного оружия происходило в разгар холодной войны, огромную роль сыграли шпионы: так, первым усилиям по созданию оружия Судного дня в СССР в значительной степени помогли шпионы Манхэттенского проекта, в первую очередь Клаус Фукс.

В 1947 году к программе по созданию советской атомной бомбы Курчатов привлек Игоря Тамма, попросив последнего исследовать возможность создания водородной бомбы. Затем была образована небольшая группа, в которую вошел Андрей Дмитриевич Сахаров. Успешная работа советских ученых вдохновила США на создание собственной водородной бомбы – все потому, что мощность этого типа бомб не ограничена.

Водородная бомба. РДС-6с — первая советская водородная бомба. Первое в мире ядерное взрывное устройство с использованием термоядерной энергии, изготовленное в виде бомбы, пригодной к практическому военному применению. Фото.

РДС-6с — первая советская водородная бомба. Первое в мире ядерное взрывное устройство с использованием термоядерной энергии, изготовленное в виде бомбы, пригодной к практическому военному применению.

12 августа 1953 года Советский Союз испытал свое первое термоядерное устройство в Центральной Сибири – мощность бомбы составляла 400 килотонн, а еще ее можно было сбросить с самолета. Через два года состоялось первое успешное испытание водородной бомбы мощностью 1,6 мегатонны на Семипалатинском испытательном полигоне, после чего последовала серия испытаний, кульминацией которых стал взрыв 23 октября 1961 года мощностью около 58 мегатонн.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Гений Оппенгеймера

Отцом атомной бомбы по праву считается Джулиус Роберт Оппенгеймер, чья гениальность и, не побоимся этого слова, безумие сделали его уникальной исторической фигурой, изменившей ход мировой истории. Обладая ненасытной жаждой знаний, глубоким чувством ответственности и непоколебимой преданностью научным исследованиям, Оппенгеймер является символом блестящей научной деятельности и… создателем оружия Судного дня.

Роберт Оппенгеймер родился 22 апреля 1904 года в семье немецких иммигрантов и с детства отличался непоколебимым интеллектуальным любопытством. Так, он внес огромный вклад в астрофизику сделав ряд новаторских предсказаний о космических объектах. Самое заметное из них прозвучало в 1939 году в статье под названием «О продолжающемся гравитационном сжатии», которая предвещала существование черной дыры.

Гений Оппенгеймера. Кристофер Нолан – величайший режиссер современности. Фото.

Кристофер Нолан – величайший режиссер современности

Первоначально оставленная без внимания, эта работа позже была вновь открыта физиками, которые признали предвидение Оппенгеймера и его значение для понимания этих загадочных небесных объектов.

Ненасытная жажда знаний позволяла Оппенгеймеру быстро усваивать информацию – гениальный ученый владел шестью языками, включая греческий, латынь, французский, немецкий, голландский и древнеиндийский язык санскрит, а во время учебы в Гарвардском университете преуспел в самых разных предметах, включая физику и химию.

Гений Оппенгеймера. Главную роль в картине Нолана сыграл Киллиан Мерфи. Фото.

Главную роль в картине Нолана сыграл Киллиан Мерфи

С семи лет Оппенгеймер увлекся кристаллами из-за их структуры и взаимодействия с поляризованным светом. Его изобретательность вышла за рамки дозволенного, и члены Нью-Йоркского минералогического клуба пригласили его на семинар, когда ему было всего 12 лет. Затем, в 1943 году Оппенгеймер выбрал отдаленное плато Лос-Аламос в качестве места для новаторского научного исследования по созданию атомной бомбы.

Не пропустите: Атомный взрыв без спецэффектов: 5 впечатляющих фактов о фильме «Оппенгеймер»

Моральная дилемма: фильм Кристофера Нолана

Британский и американский кинорежиссер, сценарист и продюсер Кристофер Нолан является одним из самых кассовых режиссеров в истории. Обладатель восьми статуэток Оскар подарил миру такие картины как «Интерстеллар», «Начало» «Дюнкерк», «Темный рыцарь» и, наконец, главный фильм 2023 года – «Оппенгеймер».

Оппенгеймер обладал силой Божьей и увидел чудовищность ядерного оружия с более близкого расстояния. Это привело его к знаменитому высказыванию “Я становлюсь смертью…”, которое отражало его моральную дилемму, – сказал Нолан в интервью британскому Times.

Будучи гениальным режиссером (мало кто готов с этим поспорить), Нолан в своих картинах поднимает важные глобальные вопросы. В одном только «Интерстеллар» можно наблюдать его восхищение наукой, космосом и человеческим гением, способным как уничтожить себя, так и превратить в нечто большее, чем сегодня.

Моральная дилемма: фильм Кристофера Нолана. Картина Нолана – хит 2023 года. Фото.

Картина Нолана – хит 2023 года

Больше по теме: Что произойдет с планетой после ядерной войны?

Поразительно, но вопросы, которыми задается режиссер, не так уж часто беспокоят общественность. И хотя романы Курта Воннегута, пережившего Вторую мировую войну, пронизаны размышлениями о будущем человечества и ответственности ученых за свои изобретения, вспоминают о них нечасто. А ведь «Колыбель для кошки» (а также «Бойня номер пять» и другие романы) позволяет нам с вами, простым читателям, хоть мельком заглянуть в душу безумного или же «злого гения».

Смелый и крайне своевременный фильм Нолана позволяет зрителю взглянуть на то, как отец атомной бомбы справлялся с преследующей его разрушительной силой, высвободившейся с его помощью и поглотившей миллионы жизней: охваченный глубоким внутренним смятением, Оппенгеймер написал и лично передал военному министру Генри Стимсону письмо, в котором страстно выступал за запрещение ядерного оружия.

Моральная дилемма: фильм Кристофера Нолана. Кадр из фильма «Оппенгеймер». Фото.

Кадр из фильма «Оппенгеймер»

Роберт Оппенгеймер был измучен последствиями научного прогресса, отягощен грузом ответственности и личной вины. подобные чувства испытывал и создатель советской водородной бомбы Андрей Сахаров:

Сегодня термоядерное оружие ни разу не применялось против людей на войне. Моя самая страстная мечта (глубже чего-либо еще) — чтобы это никогда не произошло, чтобы термоядерное оружие сдерживало войну, но никогда не применялось, — писал он.

Зачем смотреть «Оппенгеймер»?

В 2023 году человечество все еще находится в тисках технологических инноваций, таких как искусственный интеллект. Это технологическое завоевание служит мягким напоминанием об испытаниях, с которыми столкнулись создатели оружия Судного дня, включая Роберта Оппенгеймера, ведь ядерное оружие в ХХ века стало безжалостным врагом человечества.

Параллели между сегодняшним днем и эпохой Оппенгеймера мягко перекликаются в картине Нолана, подчеркивая непреходящую значимость его борьбы и глубокое влияние на ход истории в соответствующие периоды времени.

По словам Кристофера Нолана, «Оппенгеймер был самым важным человеком, который когда-либо жил в истории человечества». Это утверждение уважаемого режиссера приобретает еще больший вес по мере того, как мы углубляемся в глубокую силу и прочное наследие, которым титулованный ученый одарил мир.

Зачем смотреть «Оппенгеймер»? Мировые сборы «Оппенгеймера» превысили 500 миллионов долларов. Фото.

Мировые сборы «Оппенгеймера» превысили 500 миллионов долларов

"Оппенгеймер", рекламируемый как самый амбициозный фильм Нолана на сегодняшний день, рассказывает о событиях, приведших к испытанию первой атомной бомбы 6 июля 1945 года, с точки зрения Оппенгеймера. В каждом интервью, связанном с фильмом, Нолан и команда подчеркивали субъективный характер повествования о фильме.

Последний фильм Нолана снят по мотивам книги «Американский Прометей» и является захватывающей биографией, исследующей жизнь одноименной фигуры. С момента анонса фильм вызвал оживленные дискуссии вокруг непревзойденного физика, его монументальных достижений и происхождения первой в мире ядерной бомбы.

Могут ли законы физики объяснить устройство Вселенной?

Могут ли законы физики объяснить устройство Вселенной? Законы физики, кажется, не могут объяснить устройство Вселенной. Но почему? Фото.

Законы физики, кажется, не могут объяснить устройство Вселенной. Но почему?

С огромными масштабами космоса трудно смириться: в одной только нашей Галактике количество звезд составляет примерно 400 миллиардов, а ведь галактик во Вселенной не счесть. Космологи, однако, больше обращают внимание не на цифры – ученые хотят ответить на вопрос о том, как появились все эти звезды и галактики за отведенное им время – 13,8 миллиардов лет. Вот оно – настоящее доисторическое приключение. В конечном итоге жизнь не может развиваться без планет, а планеты – без звезд; звезды, в свою очередь, должны находиться внутри галактик, а галактики не существовали бы без богато структурированной Вселенной, поддерживающей их. Поразительно, но еще совсем недавно казалось, что понять устройство космоса можно с помощью применения небольшого числа физических законов. Вот только целая череда последних научных открытий свидетельствует о том, что Вселенная и ее устройство – намного сложнее и едва ли поддается объяснению.

Единый закон Вселенной

Когда-то казалось, что, несмотря на всю необъятность Вселенной, космос можно понять. Все, что для этого нужно – применить жесткие физические законы. Эту идеи впервые сформулировал Исаак Ньютон, показав, как яблоки, падающие с деревьев, и орбиты планет вокруг Солнца возникают под действием одной и той же силы – гравитации.

Такого рода радикальное объединение земных и небесных явлений: сохраняется и сегодня: ученые полагают, что все бесчисленные молекулы, атомы и субатомные частицы в нашей Вселенной подчиняются одному и тому же набору законов. Большинство свидетельств указывают на то, что подобное предположение верно, из чего следует, что совершенствование нашего понимания этих законов разрешит все оставшиеся вопросы о космической истории.

Единый закон Вселенной. Вселенная расширяется с ускорением, но почему так происходит – неизвестно. Фото.

Вселенная расширяется с ускорением, но почему так происходит – неизвестно

Это, однако, логическое заблуждение. Даже если представить, что человечество в конечном счете откроет “теорию всего”, охватывающую все отдельные частицы и взаимодействия, ценность подобного объяснения для самой Вселенной, вероятно, будет незначительной. Так, в ХХ веке, даже когда физика элементарных частиц раскрыла секреты атомов, стало ясно, что поведение частиц невозможно понять, сосредоточившись исключительно на отдельных объектах.

Читайте также: Могут ли законы физики меняться со временем?

О том, что современная наука (включая физику и космологию) находится в кризисе, вы наверняка знаете. Об этом свидетельствует несоответствие между ведущими физическими теориями – Общей теории относительности (ОТО) и квантовой механике. Подробнее о том, почему каждая из теорий прекрасно работает по отдельности, мы рассказывали ранее, не пропустите.

Все дело в вычислениях?

Солнечная система может показаться воплощением предсказуемости, а ее долгосрочное будущее неопределенно: в изоляции одна планета вращалась бы вокруг одной звезды бесконечно, но на самом деле планет множество, и каждая из них притягивает, хотя и очень незаметно, другие. Со временем серия крошечных толчков может привести к серьезному эффекту, для прогнозирования которого требуется непомерное количество вычислений.

В какой-то степени компьютеры могут справиться с этой задачей, моделируя коллективный результат путем суммирования индивидуальных воздействий с помощью быстрой и надежной арифметики. Проблема в том, что симуляции не согласуются друг с другом. Некоторые предсказывают, что Солнечная система стабильна, в то время как другие предполагают, что в течение нескольких миллиардов лет Меркурий может столкнуться с Венерой или даже быть выброшен в глубокий космос.

Это интересно: Почему наша Вселенная такая странная и существуют ли законы физики?

Все дело в вычислениях? Если даже Солнечная система непредсказуема, попытка понять Вселенную в целом может показаться обреченной. Фото.

Если даже Солнечная система непредсказуема, попытка понять Вселенную в целом может показаться обреченной

Ученым хорошо известно, что многочисленные моделирования Солнечной системы не могут учесть абсолютно все. По этой причине даже малейшие изменения и разногласия приводят к совершенно иным результатам. Иными словами, все наши попытки смоделировать и предсказать будущее как отдельной звездной системы, так и целой Вселенной хаотичны.

Хаос показывает, что планетные системы могут вести себя иначе и непредсказуемо, чем может предполагать холодный, безжизненный закон всемирного тяготения. Однако если даже Солнечная система хаотична и непредсказуема, то можем ли мы вообще понять и объяснить устройство Вселенной и мироздания? Неужели все наши попытки разобраться в происходящем обречены на провал?

Хотите всегда быть в курсе новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

Можно ли понять Вселенную?

Чтобы ответить на этот вопрос, рассмотрим галактики, которые в среднем в десятки миллионов раз больше по протяженности, чем Солнечная система, и чрезвычайно разнообразны по своим формам, цветам и размерам. Понимание того, как галактики стали такими разнообразными, требует от ученых, как минимум, знания того, как и где внутри них образовались звезды.

Однако звездообразование – тоже хаотичный процесс, в ходе которого рассеянные облака водорода и гелия медленно конденсируются под действием силы тяжести, и ни один компьютер даже близко не в состоянии отследить все необходимые атомы. Но даже если бы вычисления были выполнимы, хаос в любом случае увеличил бы малейшие неопределенности, лишив нас возможности получить окончательный ответ.

Ну а если бы мы строго придерживались традиционных законов физики в качестве объяснения галактик, то это был бы конец пути.

Можно ли понять Вселенную? Вселенная – место странное и таинственное. Фото.

Вселенная – место странное и таинственное

Чтобы поместиться в компьютерах, моделирование формирования галактики должно объединить огромное количество молекул, описывая, как они массово движутся, давят друг на друга, переносят энергию, реагируют на свет и излучение и так далее, и все это без явного упоминания бесчисленных индивидуумов внутри. Это требует от нас творческого подхода, поиска способов описания сути множества различных процессов, позволяющих достичь различных результатов, не зацикливаясь на деталях, которые в любом случае непостижимы.

Не пропустите: Перестают ли законы физики работать на краю Вселенной?

Имеющиеся расчеты основаны на экстраполяциях, компромиссах и всесторонних предположениях, разработанных экспертами. Неопределенные части охватывают не только звезды, но и черные дыры, магнитные поля, космические лучи и все еще не понятые “темную материю” и “темную энергию”, которые, по-видимому, управляют общей структурой Вселенной.

Можно ли понять Вселенную? Мы слишком мало знаем о Вселенной и ее обитателях. Фото.

Мы слишком мало знаем о Вселенной и ее обитателях

Это никогда не приведет к созданию буквальной цифровой копии вселенной, в которой мы обитаем. Такое воссоздание так же невозможно, как и точный прогноз будущего Солнечной системы. Но моделирование, основанное даже на неточных описаниях и наилучших предположениях, может служить ориентиром, подсказывая, как галактики могли эволюционировать с течением времени, позволяя нам интерпретировать результаты, полученные с помощью все более совершенных телескопов, и подсказывая, как узнать больше.

Вам будет интересно: Колебание крошечной частицы нарушает известные законы физики

В конечном итоге, галактики меньше похожи на машины и больше на животных – непонятные, полезные для изучения, но лишь частично предсказуемые. Принятие этого требует от нас иного подхода и восприятия Вселенной, однако именно это делает наше видение Вселенной богаче и интереснее.