Ученые создают самую подробную карту вещества во Вселенной. Почему это важно?

Ученые создают самую подробную карту вещества во Вселенной. Почему это важно? Ученые создают самую подробную в истории карту вещества во Вселенной. С ее помощью можно обнаружить материю, скрытую от наших глаз и инструментов. Фото.

Ученые создают самую подробную в истории карту вещества во Вселенной. С ее помощью можно обнаружить материю, скрытую от наших глаз и инструментов

Через 400 000 лет после Большого взрыва первичная плазма зарождающейся Вселенной начала остывать, что привело к образованию первых атомов. Затем появилось реликтовое излучение – тепловое излучение, равномерно заполняющее Вселенную и распространяющееся во всех направлениях. Этот космический микроволновый фон (CMB), впервые зарегистрированный в 1965 году, удалось зафиксировать с помощью современных телескопов и увидеть какой была Вселенная вскоре после своего рождения. Сегодня мощные астрономические инструменты позволяют создавать каталоги и карты, отображающие не только галактики и небесные тела, но и крупномасштабные структуры Вселенной. Считается, что они формировались миллиарды лет по мере расширения и «старения» нашего мира. Но вот что особенно интересно – недавно исследователи пришли к выводу, что все вещество во Вселенной, будь то темная материя или плазма, расположено неравномерно. Если создатели новой, самой подробной карты Вселенной правы, то наши представления о космосе придется пересмотреть.

Вселенная – это театр теней, а галактики – его главные действующие лица.

Реликтовое излучение

После того, как ученые обнаружили реликтовое излучение, они нанесли на карту крошечные колебания температуры, оставшиеся после Большого взрыва. Пристальное внимание к СМВ объяснимо – это излучение пережило большую часть истории Вселенной, сохранив отпечатки всех изменений, происходивших на протяжении 14 миллиардов лет.

За это время реликтовое излучение встречалось с галактиками и другими космическими структурами, растягивалось, сжималось и деформировалось. Отпечатки этих встреч, оставленные СМВ, многое говорят о распределении всей материи во Вселенной, что является ключом к разгадке фундаментальных космологических загадок.

Реликтовое излучение. Реликтовое излучение позволяет многое узнать не только об условиях, царивших в ранней Вселенной, но и о самих галактиках на ее просторах. Фото.

Реликтовое излучение позволяет многое узнать не только об условиях, царивших в ранней Вселенной, но и о самих галактиках на ее просторах.

В отличие от стандартных оптических исследований, которые фиксируют свет, испускаемый звездами, СМВ учитывает основную массу галактик, скрытую от глаз либо в виде сгустков темной материи, либо в виде рассеянного ионизированного газа, соединяющего галактики.

Больше по теме: Почему в межзвездном пространстве не так темно, как считалось раньше?

Вселенная теней

По мере развития астрономических инструментов стало понятно, что реликтовое излучение хранит в себе намного больше информации, чем считалось раньше. Так, за последние 10 лет ученым удалось подтвердить эффект Сюняева—Зельдовича, теоретезированный в 1960-е годы – он позволяет понять как менялась интенсивность радиоизлучения реликтового фона на горячих электронах межзвездного и межгалактического газа.

Еще один эффект, известный как слабое гравитационное линзирование, искажает траекторию реликтового излучения, когда оно проходит вблизи массивных объектов и искажается подобно тому, как если бы на него смотрели через основание винного бокала. Если говорить совсем просто, то слабое гравитационное линзирование позволяет увидеть невидимое и отличить темную материю от обычной.

Вселенная теней. Большая часть вещества во Вселенной скрыта от наших глаз и инструментов. Фото.

Большая часть вещества во Вселенной скрыта от наших глаз и инструментов

Еще больше интересных статей о реликтовом излучении и новейших космических телескопах читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

В совокупности эти эффекты позволили космологам составить точную карту местоположения и температуры абсолютно всей видимой материи во Вселенной (которая сохраняет характерную сигнатуру, извлекаемую из полученных изображений СМВ). И если наложить эту карту на имеющиеся изображения звезд и галактик, можно не только измерить космические расстояния, но и отследить процессы звездообразования.

В 2021 году команда ученых из Страсбургской астрономической обсерватории (Франция), применила этот подход. Изучив данные CMB, полученные с помощью Европейского космического агентства (ЕКА) и космологического телескопа Атакамы, исследователи объединили их с данными оптических телескопов, включающих почти 500 000 галактик. Поразительно, но полученный результат позволил измерить соотношение обычной и темной материи.

Вселенная теней. Вещество неравномерно распределено по Вселенной, однако раньше считалось иначе. Фото.

Вещество неравномерно распределено по Вселенной, однако раньше считалось иначе

Анализ также показал, что взрывы сверхновых звезд и аккрецирующие сверхмассивные черные дыры вытесняют газ из узлов темной материи и распределяют его (обычные телескопы не в состоянии этого обнаружить). Более того, новые данные не совпадают с предсказаниями большинства космологических моделей, а значит ответить на целый ряд фундаментальных вопросов космологии с их помощью невозможно.

Кстати, после Большого взрыва во Вселенной происходила масса необычных и странных процессов. О том, каких именно, можно прочитать здесь, рекомендуем!

Самая подробная карта Вселенной

Учитывая данные, полученные за последние 10 лет с помощью новейших астрономических инструментов ученые пришли к выводу, что вещество во Вселенной распределено не равномерно что не соответствует общепринятой космологической теории. Подробная карта скоро будет представлена широкой общественности и, как полагают астрономы, поможет понять целый ряд существующих противоречий. Все это означает, что наше понимание устройства Вселенной ошибочно (по крайней мере частично).

В исследовании принимают участие более 150 ученых, в том числе из Чикагского университета и Национальной ускорительной лаборатории им. Энрико Ферми. Цель проекта – определить и понять силы, ответственные за эволюцию Вселенной. Исследователи полагают, что если материя не распределена по Вселенной «комками», то в существующей сегодня модели не хватает чего-то действительно важного.

Самая подробная карта Вселенной. Перед вами карта того, как темная материя распределена по Вселенной. Фото.

Перед вами карта того, как темная материя распределена по Вселенной

Проведенный в ходе работы анализ (включая анализ последних данных о реликтовом излучении) позволил определить более точное местоположение материи, которая не только не распределяется равномерно и не «комкуется» но и группируется в определенных областях, – объясняют астрономы.

Согласитесь, звучит революционно. Эти выводы, однако, являются предварительными и у ученых впереди много работы. Однако результаты анализа уже позволили получить крайне полезную информацию благодаря наблюдениям и современным астрономическим инструментам. Посмотреть как выглядит общепринятая модель Вселенной можно здесь.

Ранее ученые опубликовали первую карту наблюдаемой Вселенной в рентгеновском излучении, подробнее мы рассказывали в этой статье.

Новая эра космологии

Исследователи, принимающие участие в создании самой масштабной карты Вселенной за всю историю наблюдений только начинают осознавать истинные возможности проделанной работы: «Это сенсационное улучшение космологической модели по сравнению со всеми созданными ранее. В это трудно поверить, но мы, возможно, находимся на перепутье… новой модели Вселенной», – сообщают авторы научной работы.

Новая эра космологии. Подробная карта всей видимой материи во Вселенной. Фото.

Подробная карта всей видимой материи во Вселенной

Так как в основе стандартной модели космологии лежит реликтовое излучение, новые данные могут оказаться революционными. Отметим также, что в работе ученые объединили данные двух крупнейших исследований Вселенной, проведенных с помощью Dark Energy Survey и South Pole Telescope.

Пять-10 лет назад люди думали, что с космологией покончено. Но это меняется и мы, судя по всему, вступаем в новую эру космологических исследований, – утверждают космологи.

Новая эра космологии. Вселенная и ее мощь поражают воображение. Фото.

Вселенная и ее мощь поражают воображение

Кстати, ранее астрономы составили подробную карту одной из границ Солнечной системы. Заинтригованы? Вам сюда!

Если результаты будущих исследований подтвердят озвученые выводы, то наша Вселенная на самом деле не является одинаковой для наблюдателя во всех направлениях. И хотя звучит заманчиво, говорить об окончательных выводах преждевременно. И тем не менее только представьте – возможно в самом ближайшем будущем мы наконец докажем существование темной материи. А это – настоящий прорыв.

Что можно увидеть в космосе в любительский телескоп — смотрите фото и делайте выводы

Что можно увидеть в космосе в любительский телескоп — смотрите фото и делайте выводы. Космос в телескопе выглядит не так, как многие себе это представляют. Фото.

Космос в телескопе выглядит не так, как многие себе это представляют

Нередко люди, далекие от астрономии, вдохновляются фотографиями с телескопа Хаббл или, к примеру, Джеймса Уэбба, и приобретают себе любительский телескоп. Своими глазами рассматривать поверхности планет, пролетающие ледяные кометы или туманности, которые находятся в миллионах световых лет от Земли — это невероятно интересно. Приближаясь к окуляру телескопа, человек с замиранием сердца предвкушает, как сейчас он погрузится в загадочный мир космоса, завораживающий скрытыми от посторонних глаз деталями и яркими красками. Но что же в итоге? Как это часто бывает, ожидание и реальность друг от друга сильно отличаются. Но это вовсе не значит, что покупать телескоп не имеет смысла. Просто посмотрите на эти фото, и вы сами все поймете.

Чем дорогой телескоп отличается от дешевого

Если вы зайдете в любой интернет-магазин, то заметите, что цены на любительские астрономические телескопы начинаются от 50 или даже 25 долларов США (примерно 1560 рублей) и могут доходить до нескольких тысяч долларов. Не нужно быть специалистом, чтобы понять, что чем дороже телескоп, тем лучше в него будут видны различные космические объекты. Но насколько велика и критична эта разница?

С технической точки зрения телескопы отличаются между собой оптикой, типом конструкции, диаметром объектива и, конечно, размерами. Любительские телескопы бывают линзовыми, линзово-зеркальными и зеркальными. При покупке недорогого аппарата диаметром до 100 мм, лучше отдать предпочтение линзовой или линзово-зеркальной модели. Если же вас интересует телескоп с диаметром объектива свыше 100 мм, то лучше, чтобы он был зеркальным.

Чем дорогой телескоп отличается от дешевого. В дорогой телескоп объекты выглядят более четкими и детализированными. Фото.

В дорогой телескоп объекты выглядят более четкими и детализированными

Насколько сильно отличаются возможности дешевых телескопов от дорогих и стоит ли платить больше? Планеты можно увидеть даже в самый дешевый телескоп. Вопрос только в том, что и как будет видно.

Многие думают, что в дорогой телескоп объекты будут более крупными, так как он сильнее увеличивает, что позволит рассмотреть мелкие детали. Но на самом деле это не совсем так. Да, дорогие телескопы сильнее увеличивают, но разница не настолько значительная, насколько отличается цена. Особенно это касается объектов, расположенных на большом расстоянии.

А вот в плане четкости картинки отличие будет существенным. Для лучшего понимания, телескопы разной ценовой категории можно сравнить с разным разрешением видео на YouTube — между видео в 360p, 1080p и 4k разница колоссальная. Так вот один и тот же объект в дешевый телескоп будет виден подобно видео с разрешением 360p, а в дорогой — 720p или даже 1080p.

От чего зависит видимость объектов

Видимость объектов зависит не только от качества телескопа, но и внешних факторов. Причем речь вовсе не об облачности. Колоссальное влияние на видимость оказывает световое и атмосферное загрязнение. Дело в том, что все городское освещение рассеивается в атмосфере, а также отражается от частичек пыли, которые летают в воздухе.

От чего зависит видимость объектов. Видимость галактики Андромеды в разных условиях. Фото.

Видимость галактики Андромеды в разных условиях

В результате объекты могут выглядеть очень нечеткими и размазанными даже в самый дорогой телескоп. Поэтому, если вы решили заниматься астрономией на собственном балконе, особенно в большом городе, то это не лучшая идея. Чтобы посмотреть на планеты и различные космические объекты, придется выехать за город где отсутствует уличное освещение и меньше атмосферное загрязнение. Именно поэтому обсерватории строят в горах, вдали от цивилизации.

Что можно увидеть в телескоп?

Многие люди думают, что в телескоп можно рассматривать планеты Солнечной системы в деталях, и выглядеть они будут так, как на картинках, которые публикует NASA. Вот тут любителей и ожидает самое большое разочарование. Дело в том, что многие планеты даже в дорогой телескоп выглядят как небольшие размытые пятнышки. Но это вовсе не значит, в любительский телескоп вообще ничего интересного увидеть нельзя.

Что можно увидеть в телескоп? Так выглядит Венера в условно недорогой телескоп. Фото.

Так выглядит Венера в условно недорогой телескоп

Меркурий и Венера

Меркурий по причине близкого расположения к Солнцу увидеть сложно, кроме того, наблюдать его можно очень редко. Даже если у вас получится поймать его в объектив телескопа, выглядеть он будет словно маленькая размытая клякса.

Меркурий и Венера. Венера в дорогой любительский телескоп. Фото.

Венера в дорогой любительский телескоп

С Венерой ситуация получше, ее можно увидеть и в недорогой телескоп, но выглядеть она будет тоже не сильно впечатляюще — серебристый серпообразный объект совсем небольшого размера. Ни о каких деталях говорить не приходится, даже если вы будете смотреть на Венеру в дорогой аппарат.

Меркурий и Венера. Это размытое красноватое пятно и есть Марс — так он выглядит в условно недорогой телескоп. Фото.

Это размытое красноватое пятно и есть Марс — так он выглядит в условно недорогой телескоп

Марс

Большинство людей интересует не Венера и не Меркурий, а Марс, где ученые по сей день пытаются найти жизнь или хотя бы ее следы, если она когда-то существовала, а может даже стала причиной «гибели» красной планеты. Но, к сожалению, рассмотреть Марс тоже не получится. Даже когда планета находится на самом близком к Земле расстоянии, в дешевый телескоп она выглядит как красное пятно с округлыми очертаниями, к когда Марс далеко от нашей планеты, и этого видно не будет.

Марс. Марс в дорогой телескоп выглядит поинтереснее. Фото.

Марс в дорогой телескоп выглядит поинтереснее

В дорогой аппарат деталей будет побольше. Если по везет, вы сможете увидеть даже полярные шапки. Но, в любом случае, картинка будет далека от того, что многие обычно себе представляют.

Марс. Таким можно увидеть Юпитер в дешевый телескоп. Фото.

Таким можно увидеть Юпитер в дешевый телескоп

Юпитер и Сатурн

Смотреть на Юпитер гораздо интересней. Даже Галлилео Галлилей смог увидеть эту планету в свою подзорную трубу, поэтому мощный телескоп не нужен. В дешевый аппарат вы и подавно увидите Юпитер с его экваториальными полосами. В дорогой телескоп изображение будет более четким, вы сможете разобрать даже четкие границы между экваториальными полосами. Также в любой телескоп можно увидеть четыре спутника Юпитера. К сожалению спутник Энцелад, на котором может быть жизнь, в любительский телескоп не виден.

Юпитер и Сатурн. Так выглядит Сатурн в дорогой телескоп. Фото.

Так выглядит Сатурн в дорогой телескоп

Еще больше впечатление производит Сатурн. В любой телескоп можно увидеть его знаменитые кольца и спутники. А если смотреть на планету в дорогой аппарат, можно разобрать еще и экваториальные полосы.

Уран, Нептун и Плутон

Что касается Плутона, его не получится увидеть ни в дешевый, ни в дорогой телескоп так, чтобы в этом был какой-то смысл. Слишком далеко он находится от Земли, кроме того, имеет маленькие размеры.

Уран, Нептун и Плутон. Даже в дорогой телескоп Уран видно плохо. Фото.

Даже в дорогой телескоп Уран видно плохо

Уран и Нептун увидеть можно, причем в дорогой телескоп можно даже рассмотреть цвет этих планет. Но, в любом случае, они будут выглядеть как маленькие размытые пятна. То есть для любителей эти планеты особого интереса не представляют.

Объекты глубокого космоса

Для наблюдения за объектами глубокого космоса, большое увеличение, как это ни странно, вообще не требуются. А вот от диаметра объектива зависит многое, так как он определяет светосилу телескопа. То есть, чем больше диаметр объектива, тем больше света он способен уловить. Именно способность улавливать свет позволяет в ночном небе увидеть какую-нибудь галактику или туманность.

Поэтому при обозрении объектов глубокого космоса разница между дешевыми и дорогими телескопами чувствуется более отчетлива. Но еще более важным является отсутствие светового загрязнения. Пытаться рассматривать объекты глубокого космоса из центра большого города не имеет смысла в любой телескоп.

Объекты глубокого космоса. Так выглядит скопление Геркулеса в любительские телескопы разной ценовой категории. Фото.

Так выглядит скопление Геркулеса в любительские телескопы разной ценовой категории

Чтобы добиться результата, небо должно быть безоблачным и безлунным, а атмосфера не должна быть загрязненной. В таком случае в дорогой телескоп получится увидеть сотни различных объектов. Правда четко будет видно лишь несколько десятков. На обилие красок рассчитывать не стоит — дальний космос выглядит черно-белым. А как же фото, спросите вы? Краски в них добавляют искусственно при помощи фильтров. А иногда фотографии вообще раскрашивают искусственно, но вовсе не для красоты. Таким образом ученые различают как различные газы взаимодействуют в космосе и формируют галактики и туманности.

Объекты глубокого космоса. Так выглядят звезды в телескоп. Фото.

Так выглядят звезды в телескоп

Звезды и Солнце

Звезды вряд ли представляют большой интерес для наблюдения. Они выглядят абсолютно так же, как и без телескопа. Единственное, часто вы будете обнаруживать, что объект, который невооруженным взглядом выглядит как одна звезда, на самом деле состоит из нескольких звезд, близко расположенных друг к другу. Наблюдать такие «множественные» звезды можно в любой телескоп.

Звезды и Солнце. Таким можно увидеть Солнце через хороший фильтр в дорогой телескоп. Фото.

Таким можно увидеть Солнце через хороший фильтр в дорогой телескоп

Что касается Солнца, увидеть его в телескоп можно лишь два раза в жизни — левым глазом и правым глазом. И в этой шутке действительно есть доля шутки. Без специальных приспособлений на нашу звезду смотреть нельзя. Но можно приобрести специальный фильтр, который работает по принципу солнцезащитных очков. Даже в самый недорогой телескоп с использованием фильтра можно увидеть на Солнце пятна. В дорогой телескоп, как обычно, деталей будет больше.

Звезды и Солнце. Так выглядит Луна в недорогой телескоп. Фото.

Так выглядит Луна в недорогой телескоп

Луна

Как не сложно догадаться, Луну можно рассматривать в телескоп во всех подробностях. Надо сказать, что крупные детали рельефа нашего спутника можно увидеть даже в подзорную трубу или бинокль.

Луна. Дорогой телескоп позволяет более детально рассмотреть Луну. Фото.

Дорогой телескоп позволяет более детально рассмотреть Луну

В телескоп же можно увидеть даже сравнительно небольшие кратеры и различные неровности спутника. Особенно много деталей вам покажет дорогой телескоп. Но пытаться разглядеть американский флаг и луноход не стоит даже в него, так как возможностей телескопа для этого в любом случае недостаточно.

Луна. Комету можно увидеть даже в недорогой телескоп. Фото.

Комету можно увидеть даже в недорогой телескоп

Кометы, сверхновые и искусственные спутники Земли

Иногда, когда кометы подходят близко к Солнцу, их можно увидеть в любой телескоп. Они обычно выглядят как туманная оболочка и маленькая светящаяся точка внутри. Но иногда кометы приближаются к Земле, что позволяет рассмотреть их более детально. А еще в телескоп можно увидеть земные спутники и даже МКС.

Кометы, сверхновые и искусственные спутники Земли. В хороший телескоп можно увидеть даже отдельные детали МКС. Фото.

В хороший телескоп можно увидеть даже отдельные детали МКС

Если заниматься наблюдением космоса более серьезно, время от времени можно увидеть такие явления, как взрывы сверхновых, затмение звезд астероидами, и пр. Также можно наблюдать переменные звезды, которые с течением времени меняют свою яркость.

Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.

Да, наблюдение за космическими объектами в телескоп — это не такое красочное шоу со множеством деталей и подробностей, как многие себе представляют. Однако от этого оно не становится менее увлекательным и захватывающим.

Джеймс Уэбб разглядел «Столпы Творения»

Джеймс Уэбб разглядел «Столпы Творения»

«Столпы Творения», запечатленные космическим телескопом Джеймс Уэбб

Космический телескоп Джеймс Уэбб, преемник Хаббла, обратил свой инфракрасный взор на Столпы Творения – могущественные космические колонны, окутанные звездной пылью. Впервые мир увидел эти скопления межзвездного газа и пыли весной 1995 года на изображениях, полученных Хабблом. В 2011 году их увидел космический телескоп «Гершель», а в 2014 «Хаббл» сделал новую фотографию в более высоком разрешении. И так как человечество вступило в новую астрономическую эпоху после запуска обсерватории Джеймс Уэбб, новый снимок Столпов Творения стал настоящей сенсацией. Дело в том, что Уэбб наблюдает космос в инфракрасном диапазоне, улавливая все, что раньше было скрыто от наших глаз, включая далекие галактики и пылевые облака, так что новый снимок Столпов творения был лишь вопросом времени. На изображении видны высокие горы газа и пыли в туманности Орла, расположенной в 6500-7000 световых лет от Земли.

Космические обсерватории

За последние несколько месяцев космический телескоп Джеймс Уэбб подарил миру новый взгляд на космос и Вселенную – его официальная галерея с каждым днем становится все больше и больше. Каждое новое изображение Уэбба дарит астрономам улучшенное понимание таких далеких явлений, как белые карлики и туманности.

Этот астрономический инструмент полностью оправдывает труд и вложенные в него ресурсы, включая 10 миллиардов долларов – рекордную сумму для современной науки. И хотя с момента запуска прошло совсем немного времени, мы уже наблюдаем объекты, скрытые от таких предшественников Уэбба как Хаббл.

Это интересно: Сколько памяти у телескопа «Джеймс Уэбб»? Спойлер: меньше, чем в вашем смартфоне

Джеймс Уэбб разглядел «Столпы Творения»

Новый телескоп Джеймса Уэбба работает в инфракрасном диапазоне, который для человеческого глаза невидим.

Напомним, что космический телескоп Хаббл был запущен на околоземную орбиту в 1990 году и работает до сих пор. Чувствительность Хаббла и сделанные им изображения позволили нам увидеть объекты, расположенные на огромных расстояниях от нашей планеты и галактики.

Этот революционный инструмент также является единственным космическим телескопом, улавливающим видимый свет.Исследователи отмечают, что четкость Хаббла и Уэбба по сравнению с наземным телескопическим изображением в десять раз выше — и это поистине впечатляющий результат.

Джеймс Уэбб разглядел «Столпы Творения»

Хаббл находится на очень близкой орбите вокруг Земли, а Уэбб будет на расстоянии 1,5 миллиона километров (км) во второй точке Лагранжа (L2)

Более того, в то время как Уэбб изучает Вселенную в инфракрасном диапазоне, Хаббл работает в оптическом и ультрафиолетовом диапазонах. Еще больше радует тот факт, что Хаббл продолжит работу вплоть до 2030-х гг., а значит впереди немало революционных открытий. Еще одним важным отличием является большое зеркало Уэбба, а также расстояние от Земли, на котором вращаются оба космических телескопа.

Больше по теме: Телескоп «Джеймс Уэбб» сфотографировал взрыв сверхновой. Почему это важно?

Там, где рождаются звезды

Разница между обсерваториями Хаббл и Уэбб огромна. И чтобы увидеть ее астрономы сравнили два изображения знаменитых Столпов Творения на фоне туманно-голубого неба. Эти могущественные колонны находятся в созвездии Орла – местом рождения новых звезд и одной из наиболее продуктивных звездных фабрик Млечного Пути.

Звездная фабрика (звездный питомник) – одни из самых удивительных мест во Вселенной. Они образуются при разрушении плотных газопылевых облаков, запуская потоки звездного вещества в окружающее пространство. Как правило звездообразующие облака окружены магнитными полями.

Джеймс Уэбб разглядел «Столпы Творения»

Во Вселенной огромное количество звездных питомников. Одно из них – Столпы Творения

Еще больше интересных статей о космосе и последних научных открытиях читайте на нашем канале в Яндекс.Дзен – там постоянно выходят статьи, которых нет на сайте!

Так как изображение Столпов творения сделано с помощью камеры ближнего инфракрасного диапазона Уэбба (NIRCam), астрономы заявили, что в будущем смогут составить список звезд туманности и их типов. Дальнейшие наблюдения также приведут к лучшему пониманию того, как именно рождаются, формируются и погибают звезды. Новое изображение не только потрясающе красиво – оно раскрывает никогда не наблюдаемые космические процессы.

Самое интересное в новом изображении то, что оно на самом деле показывает нам процесс звездообразования, — рассказал Space.com Антон Кукемур, астроном-исследователь из STScI.

Чтобы увидеть разницу между снимками Хаббла и Уэбба, исследователи из NASA опубликовали сравнение двух изображений Столпов Творения – непроницаемых, угрожающе темных образований, поднимающихся из туманности Орла.

Вам будет интересно: Хаббл сфотографировал звезду возрастом почти 13 миллиардов лет

Столпы Творения – сравнение

Величественные космические колонны скрывают в себе много нового, а астрономы собирали это изображение из необработанных данных, полученных с помощью новейшей камеры телескопа Джеймс Уэбб NIRCam. По мнению исследователей, текстура, уровень детализации и количество научной информации в фотографиях Уэбба поражают самых искушенных из них.

Мы поражены тем, как Уэбб увидел пыль и газ, которые на снимках Хаббла были абсолютно темными, — говорится на сайте американского космического агенства NASA.

Джеймс Уэбб разглядел «Столпы Творения»

Столпы Творения в объективе Хаббла

На изображениях сделанных космическим телескопом Хаббл не видно никаких деталей. Однако теперь, впервые в истории, астрономы заглянули в самое сердце этой области, увидев звезды, формирующиеся внутри пыльных колонн. К слову, мы не так много знаем о них и мощных магнитных полях, удерживающих это космическое формирование.

Не пропустите: Знакомьтесь – новые телескопы, которые навсегда изменят астрономию

Как сообщают эксперты NASA, на изображении выше Столпы Творения напоминают скалы, но это внешнее сходство. На самом деле эти величественные колонны сформированы из холодного межзвездного газа и пыли, которые выглядят полупрозрачными в инфракрасном диапазоне. На новом изображении также видны новорожденные звезды, некоторым из которых всего несколько сотен тысяч лет.

Джеймс Уэбб разглядел «Столпы Творения»

Столпы Творения в видимом свете космического телескопа Хаббл в 2014 году. Справа — новое инфракрасное изображение, полученное обсерваторией Джеймс Уэбб.

Интересно, что по мнению астрономов наслаждаться этим зрелищем обитатели Вселенной, включая нас с вами, смогут всего несколько миллионов лет, когда туманность исчезнет. По мнению некоторых астрономов, это уже могло произойти из-за взрыва сверхновой, уничтожившей космическое формирование. Правда, узнать наверняка мы сможем только через тысячу лет, когда свет доберется до нашей Солнечной системы.

Что находится по ту сторону Млечного Пути?

Что находится по ту сторону Млечного Пути?

Название нашей галактики восходит к древнеримскому via lactea, что в переводе означает «молочная дорога». Дело в том, что звездные скопления, за которыми наблюдали наши далекие предки, приводили их в замешательство. И чтобы хоть как-то понять причины, по которым ночное небо усеяно яркими огнями, люди наделяли звезды и туманности божественной силой и происхождением. Так, согласно греческому мифу, Зевс привел домой своего сына Геракла, чтобы Гера покормила его грудью, пока спала. Но Гера не любила полубога и проснувшись оттолкнула его от себя, отчего несколько капель молока пролились в ночное небо. В других культурах наблюдаемая с Земли звездная тропа называлась иначе и лишь со временем (и развитием технологий) человечество узнало что представляет собой Млечный Путь. И так как мы видим галактику исключительно сбоку, узнать что происходит на ее другой стороне едва ли возможно. Для этого необходимо создать подробную карту расположения звезд Млечного Пути. Но ученым это, на удивление, удалось.

Звездные скопления Млечного Пути

Как и другие галактики на просторах Вселенной, Млечный Путь представляет собой крупную систему из нескольких сотен миллиардов звезд, одна из которых — наше Солнце. При этом у астрономов по-прежнему нет полного понимания его природы, в отличие от других внешних звездных систем. Ситуацию усложняет толстый слой межзвездной пыли, который закрывает большую часть Галактики от наблюдения оптическими телескопами. По этой причине определить ее крупномасштабную структуру можно только с помощью радио и инфракрасных телескопов.

Согласно имеющимся данным, большинство звезд Млечного Пути – одиночные светила как наше Солнце. Следом идут двойные звезды и их скопления, в каждом из которых содержится от десятков до тысяч ярких небесных тел. Эти объекты отличаются друг от друга по возрасту, размерам и количеству в каждом отдельном скоплении.

Что находится по ту сторону Млечного Пути?

Количество звезд в одном только Млечном Пути поражает воображение

Напомним, что самыми большими и массивными звездными скоплениями являются шаровые скопления (названные так из-за своей округлой формы). По оценкам астрономов наша Галактика содержит более 150 таких скоплений, однако их точное количество по-прежнему неизвестно. При этом именно эти скопления образуют сферический ореол вокруг Млечного Пути.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram – так вы точно не пропустите ничего интересного!

Их отличительной чертой является возраст, определить который можно путем сравнения звездного населения шаровых скоплений с моделями звездной эволюции. Так, возраст самых первых звезд нашей Галактики колеблется от 11 до 13 миллиардов лет. Напомним также, что шаровые скопления — чрезвычайно яркие объекты, средняя светимость которых эквивалентна примерно 25 000 Солнц, а самые светящиеся как минимум в 50 раз ярче.

Млечный Путь со стороны

Для стороннего наблюдателя наша Галактика выглядит как огромный тонкий диск – такую форму Млечный Путь обрел из-за вращения. И если бы не сила гравитации, то каждое небесное тело в галактике отправилось бы в открытый космос, блуждая по просторам бескрайней Вселенной. Но так как наш обзор ограничен, количество наблюдаемых звезд не сильно превышает 6000.

Что находится по ту сторону Млечного Пути?

По своим размерам Млечный Путь сильно уступает другим галактикам (Радиус звёздного диска Млечного Пути и радиус Галактики составляют 16 килопарсек)

На первый взгляд кажется что это много, но на самом деле эти шесть тысяч небесных светил – лишь малая часть нашей Галактики. Так, на каждую видимую звезду приходится более 20 миллионов невидимых, а большинство звезд либо слишком тусклые, либо находятся слишком далеко или же скрываются за облаками космической пыли.

Больше по теме: От облаков до компьютерной симуляции: как рождаются звезды?

Но можно ли в таком случае узнать как выглядит Млечный Путь со стороны? Некоторые исследователи считают, что для этого необходимо установить точное положение звезд и затем нанести их на трехмерную карту.

Чтобы сделать это, можно воспользоваться известной астрономической техникой, изобретенной почти 180 лет назад. Так называемый «звездный параллакс» был изобретен в 1838 году немецким астрономом Фридрихом Бесселем (для измерения расстояния до звезды в созвездии Лебедя).

Основы этого метода довольно просты: сначала необходимо поднести указательный палец к лицу и закрыть один глаз. Затем открыть его и закрыть другой, удерживая палец на расстоянии. Очевидное изменение положения пальца, когда вы смотрите на него правым и левым глазом, зависит от того, насколько далеко он находится от вашего лица. Главное условие – владение навыками тригонометрии и наличие самого обыкновенного оптического телескопа. И вуаля – Вселенная перед вами (почти как на ладони).

По ту сторону Галактики

Вспомнив нехитрый метод звездного параллакса, исследователи из Института радиоастрономии имени Макса Планка и Смитсоновского центра астрофизики решили выяснить как выглядит скрытая от нас часть Млечного Пути. В анализе, опубликованном в журнале Monthly Notices of the Royal Astronomical Society, астрономы измерили расстояние до группы звезд на другой стороне Галактики на расстоянии 66 000 световых лет от Земли (что почти вдвое превышает предыдущий рекорд в 36 000 световых лет, достичь которого удалось в 2013 году).

Что находится по ту сторону Млечного Пути?

Полностью разглядеть Млечный Путь с Земли невозможно.

Измерить расстояние удалось с помощью радиоинтерферометра VLBA (Very Long Baseline Array) — антенной решетки со сверхдлинными базами, который состоит из десяти радиотелескопов, контролируемых удаленно. Сооружение этого астрономического инструмента началось в 1986 и завершилось в 1993. Стоимость проекта составила 85 млн долларов. Строительство VLBA позволило астрономам обнаруживать сдвиги в положении звезд.

Это интересно: Астрономы определили лучшее место и время для жизни в Млечном Пути

Так, с помощью VLBA в 2014 и 2015 годах ученым удалось обнаружить свет из области космоса, где рождаются новые звезды, даже несмотря на облака газа и пыли, блокирующие большую часть исходящего излучения. И так как прогресс не стоит на месте, VLBA позволяет исследователям точно измерять расстояние от Земли до далеких звезд и внимательно наблюдать за спиральными рукавами Галактики и их формы.

Это означает, что с помощью VLBA мы можем нанести на карту всю Галактику. Мы полагаем, что на ее создание уйдет не менее десяти лет, – сообщают авторы нового анализа.

Что находится по ту сторону Млечного Пути?

С помощью мощных астрономических инструментов мы способны изучить наблюдаемую Вселенную

Ну а пока ученые будут заняты наблюдениями и сбором данных, нам с вами придется затаить дыхание размышляя о том, какие светила и их скопления находятся на той стороне Млечного Пути. Ну а пока исследователи изучают скрытую часть Галактики, их коллеги уже создали самую настоящую карту погибших звезд и их останков. Стоит ли говорить насколько трудно было ее создать, ведь во Вселенной ничто не стоит на месте.

Не пропустите: Когда динозавры бродили по Земле, она была на другой стороне Млечного Пути

Эти сложные астрономические модели привели к созданию карты звездного некрополя – области, в которой звезды родились и погибли. И пока мы находимся в ожидании самой точной звездной карты Млечного Пути, предлагаем ознакомиться с еще одной удивительной работой – картой расположения черных дыр в наблюдаемой Вселенной. Заинтригованы? Тогда вам сюда!

Космическая музыка: как звучат черные дыры

Космическая музыка: как звучат черные дыры

В NASA опубликовали «звучание» чёрной дыры в созвездии Персей

Космос – тихое место. Отсутствие кислорода не позволяет звуковым волнам распространяться, так как большая часть космического пространства – это вакуум, в котором нет среды способной передавать звук. И все же многочисленные утверждения о том, что во Вселенной вообще нет звука не совсем верные. На самом деле скопления галактик содержат большое количество газа, который обеспечивает условия для распространения звуковых волн. Недавно исследователи из NASA представили изумленной публике запись, на которой черная дыра в созвездии Персей испускает пугающий звук. Совместно с командой из Массачусетского технологического института, исследователям удалось провести преобразование излучения рентгеновского эха в слышимые звуковые волны.

Сверхмассивная черная дыра в центре скопления галактик Персей, расположенного на расстоянии 250 миллионов световых лет от Земли, излучает волны давления, которые можно преобразовать в звук.

Как звучат черные дыры

Если вы вдруг окажетесь в открытом космическом пространстве, то как гласит слоган фильма «Чужой», ваш крик не услышит никто. Космический вакуум не позволяет звуковым волнам распространяться. Но стоит оказаться недалеко от скоплений галактик, окруженных газопылевыми облаками, кое-что услышать все-таки можно.

Напомним, что согласно Общей теории относительности (ОТО) Эйнштейна, черные дыры – это объекты с гравитации такой силы, что ничто, даже свет, не говоря уже о звуке, не может вырваться наружу. Парадоксально, но именно черные дыры могут быть самыми яркими объектами во Вселенной.

Космическая музыка: как звучат черные дыры

Перед вами черная дыра М87. Снимок получен в 2019 году

Сверхмассивная черная дыра в центре скопления галактик Персей ассоциируется со звуком начиная с 2003 года. Волны давления, испускаемые этим космическим объектом, создают рябь горячего газа в скоплениях галактик. Эту рябь, как оказалось, можно преобразовать в ноты.

Ранее мы рассказывали про странные столкновения нескольких черных дыр и гравитационных волнах.

Недавно астрономам удалось преобразовать данные в звук с помощью рентгеновской обсерватории NASA «Чандра». Звук типичного рентгеновского эха черной дыры, который мы слышим на записи ниже — это нота, расслышать которую человек не способен, поэтому при обработке данных ее пришлось многократно усилить.

По сути, «музыка» черной дыры – это перевод астрономических данных, увеличенный на 57 или 58 октав выше их истинной высоты, – объясняют астрономы.

В ходе необычной и творческой работы звуковые волны были извлечены в радиальных направлениях, то есть наружу от центра сверхмассивной черной дыры. Затем сигналы были повторно синтезированы в диапазоне человеческого слуха.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram, чтобы не пропустить ничего интересного!

Космическая музыка

Но если вас удивляют «звуки космоса», напомним, что черная дыра в созвездии Персей – не единственный объект, который можно послушать. Большая часть космической музыки собрана приборами различных космических аппаратов – от зонда Juno, наблюдающего сигналы плазменных волн, исходящие из ионосферы Юпитера, до обнаружения аппаратом Кассини радиоизлучений Сатурна.

Космическая музыка: как звучат черные дыры

Чтобы услышать космического монстра, ученым пришлось многократно усилить преобразованный звук

Гравитационные волны – еще один пример. Они буквально растягивают и сжимают пространство, а рентгеновский, оптический и инфракрасный свет позволяет превратить рябь пространства-времени в музыкальные произведения. И если добавить к ним аранжировку, представить положение и яркость источников света в Млечном Пути совсем несложно.

А вы знали, что черная дыра под неофициальным названием "Единорог" расположилась всего в 1500 световых годах от Земли? О том, почему во Вселенной существует много маленьких черных дыр можно прочитать здесь.

Более того, композиторы занимаются этим уже почти 70 лет. Музыка, как и космос, постоянно развивается по мере того, как новые технологии стремятся улучшить наши слуховые познания Вселенной.

Космическая музыка: как звучат черные дыры

Столкновение двух черных дыр порождает гравитационные волны

При этом звук – это всего лишь набор волн давления, частоты которых вызывают отклик в нашем мозге. И хотя звук не может распространяться в космическом вакууме, другие виды волн – например, электромагнитные и гравитационные – могут. Именно ими руководствуются исследователи при создании музыкальных космических произведений.

Кстати, ранее мой коллега Рамис Гениев рассказывал о новой посылке для инопланетян с «человеческой» музыкой, рекомендую к прочтению.

Небесные заклинания

В поисках вдохновения астрономы также всматриваются в центр Млечного Пути, который находится далеко от нашей планеты. Переводя изначально цифровые данные (в виде единиц и нулей), полученные космическими телескопами в изображения, ученые создают визуальные снимки, которые в противном случае были бы невидимы для нас.

То же самое происходит и с обработкой звука: звезды и другие небесные объекты преобразуются в отдельные ноты, в то время как протяженные облака газа и пыли создают развивающийся гул.

Звук играет важнейшую роль в нашем понимании окружающего мира и Вселенной и с этим невозможно не согласиться, – полагают ученые.

Космическая музыка: как звучат черные дыры

Обложка альбома Celestial Incantations

Ранее исследователи опубликовали музыкальный альбом под названием «Небесные заклинания» (Celestial Incantations), который включает в себя «звуки» изнутри и за пределами Солнечной системы. Так, можно услышать излучение галактического пульсара и слияние двух черных дыр.

Чириканье черных дыр, первая акустическая запись атмосферы Марса, и звуки Солнечной системы можно здесь.

Космическая музыка: как звучат черные дыры

Теперь у нас есть возможность послушать преобразованные звуки, которые исходят от черной дыры и других космических объектов

Альбом представляет собой совместную работу ученых, музыкантов и художников и призывает задуматься о бесконечно расширяющейся Вселенной и мирах, что ее заполняют. По мнению создателей Celestial Incantations искусство играет важную роль в развитии науки и делает космос для обитателей Земли ближе.