В космосе произошел крупнейший взрыв – его отголоски достигли Земли

В космосе произошел крупнейший взрыв – его отголоски достигли Земли. В космосе произошел самый яркий гамма-всплеск за всю историю наблюдений. Фото.

В космосе произошел самый яркий гамма-всплеск за всю историю наблюдений

9 октября 2022 года в космической темноте вспыхнул самый яркий взрыв за всю историю наблюдений. Гамма-всплеск, получивший название GRB 221009A, произошел примерно в 2,4 миллиардах световых лет от Земли и был настолько мощным, что стал причиной больших колебаний электрического поля ионосферы Земли, о чем говорится в недавно опубликованном исследовании. Ученые из Университета Аквилы и Национального института астрофизики в Италии предоставили доказательства изменения электрического поля ионосферы на расстоянии около 500 километров. Новая работа, опубликованная в журнале Nature Communications, проливает свет на сложные взаимодействия между космическими явлениями и слоями атмосферы Земли, предлагая ценную информацию о последствиях экстремальных астрофизических событий на нашей планете.

Гамма-всплески (GRB) – это кратковременные вспышки гамма-излучения, наиболее энергичного компонента электромагнитного спектра. За ним следует рентгеновское излучение.

Что такое гамма-всплески?

Гамма-всплески (gamma ray-bursts, GRB) – это самые мощные взрывы во Вселенной, которые представляют собой краткие вспышки высокоэнергетического света. Считается, что они являются результатом самых взрывоопасных событий на космических просторах, включая рождение черных дыр и столкновения нейтронных звезд. По данным NASA, гамма-всплески, длящиеся от нескольких миллисекунд до нескольких минут, могут быть в сотни раз ярче обычной сверхновой.

Первое наблюдение гамма-всплеска состоялось 2 июля 1967 года с помощью американского спутника Vela 4A, входящему в серию космических аппаратов для обнаружения рентгеновского и гамма-излучения (изначально предназначенных для мониторинга любых ядерных испытаний). В период с 1971 по 1973 год ученые из Лос-Аламосской национальной лаборатории изучали несколько гамма-всплесков, обнаруженных спутниками Vela, и определили, что гамма-всплески имеют «космическое происхождение». С тех самых пор исследователи очарованы этими массивными космическими взрывами и их источниками.

Что такое гамма-всплески? Гамма-всплеск от черной дыры. Фото.

Гамма-всплеск от черной дыры

Гамма-всплески – это космические лаборатории, которые позволяют нам изучать состояния материи и физику, которые невозможно воспроизвести на Земле, – объясняет Брендан О’Коннор, научный сотрудник Центра космологии Макуильямса при Университете Карнеги-Меллон.

Как объясняют специалисты по изучению массивных космических взрывов, гамма-излучение, связанное с гамма—всплесками, создается коллимированной струей материала, движущейся почти со скоростью света – так называемыми релятивистскими скоростями — что позволяет изучать механизмы излучения релятивистских частиц. Так, местоположения гамма-всплесков информируют исследователей о формировании и эволюции галактик и звезд на протяжении всей истории Вселенной.

Читайте также: Ученые зафиксировали самый мощный космический взрыв со времен Большого взрыва

Источники гамма-всплесков

Астрофизики отмечают, что источник (или причина) гамма-всплеска зависит от его длительности. Так, гамма-всплески, которые длятся менее двух секунд, являются результатом слияния двух нейтронных звезд или нейтронной звезды и черной дыры. Более длительные гамма-всплески, которые могут длиться часами, происходят во время коллапса массивных звезд (т.е. рождения черных дыр).

Источники гамма-всплесков. Гамма-всплески возникают в результате струй частиц, ускоренных примерно до 99,9% скорости света. Фото.

Гамма-всплески возникают в результате струй частиц, ускоренных примерно до 99,9% скорости света.

По словам профессора Рэдбудского университета Эндрю Левана, за несколько секунд гамма-всплеск может испустить столько энергии, сколько Солнце выделит за все 9 миллиардов лет своей жизни. Исследователи также отмечают, что гамма-всплески тесно связаны с галактиками, в которых происходит интенсивное звездообразование.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустите ничего интересного!

В прошлом считалось, что гамма-всплески способны убить всю жизнь в галактике, однако эта теория сегодня опровергнута. Все потому, что энергия гамма-всплесков напоминает лучи, подобно тем, что исходят от маяка. Это, однако, не значит, что они полностью безопасны. Так, эксперты Европейского космического агентства (ЕКА) полагают, что все, что попадает в радиус 200 световых лет от излучения, испарится.

Самый мощный взрыв во Вселенной

Среди множества зарегистрированных на сегодняшний день гамма-всплесков, самым мощным является GRB 221009A, произошедший в созвездии Стрельца 9 октября 2022 года, а его излучение шло до Земли 1,9 млрд лет. Этот мощнейший взрыв длился около семи минут и был обнаружен более чем через 10 часов после первоначального наблюдения. Вспышку зафиксировали сразу несколько космических обсерваторий, включая Swift и Fermi (NASA), а также Integral (ЕКА).

Вспышка света от новорожденной черной дыры, находящейся в миллиардах световых лет от нашей планеты, ударила по Земле с такой силой, что потрясла верхние слои атмосферы, – сообщают авторы нового исследования.

Теперь же, через год после крупнейшего в истории наблюдений гамма-всплеска, с помощью спутниковых наблюдений и специально разработанной аналитической модели, ученые доказали, что GRB 221009A оказал глубокое влияние на проводимость ионосферы Земли, вызвав сильное возмущение не только в нижней части ионосферы, но и в верхней (на высоте около 500 километров).

Самый мощный взрыв во Вселенной. Световое эхо от гамма-всплеска, создаваемое светом, проходящим сквозь толстый слой пыли по мере его приближения к нам, создает эффект «расширяющегося кольца». Фото.

Световое эхо от гамма-всплеска, создаваемое светом, проходящим сквозь толстый слой пыли по мере его приближения к нам, создает эффект «расширяющегося кольца».

И хотя вероятность событий на уровне вымирания из-за гамма-всплесков считается незначительной, астрофизики признают потенциальные риски, связанные с их огромной мощностью. Но какой именно эффект на ионосферу оказал GRB 221009A и стоит ли беспокоиться?

Это интересно: Обнаружен странный повторяющийся сигнал исходящий из центра Млечного Пути

Влияние гамма-всплеска на ионосферу Земли

Напомним, что ионосфера – ионизированная часть верхних слоев атмосферы Земли, расположенная на высотах примерно от 50 до 1000 км, является важнейшей областью, в которой атмосфера соприкасается с космосом. Ионосфера играет жизненно важную роль в защите нашей планеты от экстремального ультрафиолетового и рентгеновского излучения Солнца, так как ионизирует атмосферные атомы и молекулы, создавая пучок свободных электронов.

Ионосфера также отражает радиоволны, которые мы используем для связи и навигационных систем. Так, во время вспышек на Солнце исследователи фиксируют изменения в нижних слоях ионосферы, что и произошло в случае с «самым мощным взрывом на просторах Вселенной» – по словам авторов научной работы, последствия GRB 221009A сравнимы с последствиями солнечной вспышки.

Влияние гамма-всплеска на ионосферу Земли. Эффект от мощнейшего в истории гамма-всплеска стал причиной возмущения земной ионосферы. Фото.

Эффект от мощнейшего в истории гамма-всплеска стал причиной возмущения земной ионосферы

Вам будет интересно: Астрономы определили лучшее место и время для жизни в Млечном Пути

К счастью, беспокоиться о последствиях мощнейшего гамма-всплеска не стоит – земная атмосфера поглотила его до того, как последнее приблизилось к поверхности. Подобные гамма-всплески, тем не менее, могут взаимодействовать с атмосферой на больших высотах.

Так как ранее влияние гамма-всплесков на всю ионосферу изучено не было, мы использовали спутниковые данные и впервые смогли обнаружить и измерить вариации электромагнитного поля на больших высотах ионосферы, – говорится в работе.

Эффект, все же, был огромным: зафиксированное воздействие на ионосферу сохранялось около 10 часов. Эти данные, по словам исследователей, могут помочь им лучше понять и смоделировать воздействие отдаленных взрывов на атмосферу Земли – и предсказать, что могло бы произойти, если бы один из них произошел поблизости.

Влияние гамма-всплеска на ионосферу Земли. Гамма-всплеск произршел в созвездии Стрельца примерно в 2,4 млрд световых лет от нашей планеты. Фото.

Гамма-всплеск произршел в созвездии Стрельца примерно в 2,4 млрд световых лет от нашей планеты

«Беспрецедентный поток фотонов, связанный с GRB 221009A, оказал сильное влияние на проводимость ионосферы Земли», – пишут исследователи. Отметим, что фотоны гамма-излучения обладают энергией, в миллиард-триллион раз превышающей энергию видимых фотонов, и испускаются в результате высокоэнергетических событий.

Атмосфера Земли, стабильность ионизации которой имеет решающее значение для эволюции и выживания жизни, подвергается воздействию космических взрывов, которые производят высокоэнергетические гамма-всплески (GRB).

Фактически, огромное изменение электрического поля ионосферы, вызванное сильным изменением проводимости ионосферы, было обнаружено в верхней части ионосферы (507 километров), но никто… ничего не заметил. Разве наш маленький защитный атмосферный пузырь не прекрасен?

Где находится самая близкая к Земле черная дыра

Где находится самая близкая к Земле черная дыра. Найти черную дыру в космосе сложно, но ученые способны даже на такое. Фото.

Найти черную дыру в космосе сложно, но ученые способны даже на такое

По расчетам ученых, в галактике Млечный путь может существовать до 100 миллионов черных дыр. Это места с настолько мощной гравитацией, что попадающие в них объекты никогда не возвращаются обратно. Черные дыры притягивают к себе даже фотоны света, которые считаются самыми быстрыми объектами во Вселенной — будучи мощными поглотителями света, черные дыры всегда темные, из-за чего и получили название. Из-за отсутствия какого-либо свечения и формы, ученые не могут увидеть черные дыры при помощи телескопов напрямую, поэтому изучать их очень сложно. Самая близкая к Земле черная дыра была найдена астрономами в 2023 году, и это очень важное открытие. Может ли найденный объект затянуть нас в себя и стать причиной конца человечества?

Что такое черная дыра простыми словами

Чтобы понять, что из себя представляют черные дыры, лучше сначала вспомнить, что такое скорость света. Под этим термином понимают быстроту движения фотонов света — она составляет 299 792 458 метров в секунду. Во Вселенной нет ничего, что может двигаться быстрее света.

Что такое черная дыра простыми словами. В галактике Млечный путь может быть до 100 миллионов черных дыр, но во Вселенной их несчетное количество. Фото.

В галактике Млечный путь может быть до 100 миллионов черных дыр, но во Вселенной их несчетное количество

Черные дыры — это места с настолько сильной гравитацией, что под ее влияние попадают даже скоростные фотоны света. Считается, что черные дыры возникают после того, что сверхмассивные звезды останавливают термоядерные процессы и гаснут. Когда звезда гаснет, она начинает сжиматься до размеров нейтронной звезды. В результате сгорания звезды образуется невероятно большое количество массы с высокой плотностью, которая искажает пространство. У образованной черной дыры есть горизонт событий — граница, из которой объекты не могут выбраться обратно.

Что такое черная дыра простыми словами. Черные дыры искажают пространство и время. Фото.

Черные дыры искажают пространство и время

Статья в тему: Что произойдет, если рядом с Землей появится черная дыра?

Что происходит внутри черной дыры

Каждая черная дыра разная, у них разные размеры и свойства. Это настолько сложный объект, что его устройство сложно представить даже самым умным людям на Земле. То, что происходит с объектами внутри черной дыры, ученые предполагают только путем сложных вычислений.

Считается, что даже очень крупные объекты попадают в черную дыру очень быстро — речь идет о секундах. Каждая «жертва» черной дыры меняет свою форму и для него пространство и время перестают существовать как отдельные явления. Согласно теории «вращающегося вихря», объекты в черной дыре становятся длинными и выглядят как лапша, которая кружится в центре кастрюли.

Что происходит внутри черной дыры. Считается, что внутри черных дыр объекты вытягиваются. Фото.

Считается, что внутри черных дыр объекты вытягиваются

Предположений о том, что находится внутри черных дыр, очень много. Некоторые ученые считают, что там находятся другие Вселенные, но в более сжатой форме. Подробно об этой идее рассказывала моя коллега Любовь Соковикова в статье «Можно ли путешествовать по Вселенной с помощью черных дыр?».

Как узнать что находится внутри черных дыр? И причем тут гравитационные волны?

Как ученые открывают черные дыры

Все черные дыры находятся далеко от Земли и, к тому же, являются невидимыми для телескопов. Несмотря на это, астрономы разработали сразу несколько способов охоты на них — благодаря им уже подтверждено существование нескольких десятков черных дыр. В начале статьи мы говорили, что их около 100 миллионов штук, но это всего лишь результат сложных вычислений, потому что современные ученые физически не смогли бы открыть так много космических объектов.

Как ученые открывают черные дыры. Обнаружить черные дыры напрямую невозможно, потому что они практически невидимы. Фото.

Обнаружить черные дыры напрямую невозможно, потому что они практически невидимы

Астрономы способны заподозрить о существовании черной дыры, ориентируясь на искажении света от находящихся рядом с ними звезд. Иногда соседние звезды начинают попадать под воздействие черной дыры, раскаляться и выделять мощное излучение, которое можно заметить через телескоп. Также на наличие черной дыры может указывать слабое колебание находящихся рядом звезд.

Вам будет интересно: В космосе есть астероид из золота — он может сделать всех людей миллиардерами

Самая близкая черная дыра

На протяжении многих лет самой близкой к Земле черной дырой считалась HR 6819, расположенная в 1 000 световых лет от нас. Но результаты научных исследований показали, что это двойная звездная система без черной дыры.

Также кандидатом на звание самой близкой к Земле черной дыры являлся объект, который располагается в созвездии Единорога рядом со звездой V723 Mon. Он может находиться на расстоянии 1 120 световых лет.

Самая близкая черная дыра. Единорог также привлекает ученых тем, что может быть самой маленькой известной науке черной дырой. Фото.

Единорог также привлекает ученых тем, что может быть самой маленькой известной науке черной дырой

По данным Space.com, самой близкой к Земле черной дырой является Gaia BH1. Она находится в 1 560 световых годах от нас, в созвездии Змееносца. Она была открыта при помощи европейского телескопа Gaia и наземной обсерватории Gemini на Гавайях. Эти же аппараты открыли черную дыру Gaia BH2, которая находится на расстоянии 3 800 световых лет, в созвездии Центавра.

Самая близкая черная дыра. К сожалению, как выглядит черная дыра Gaia BH1 мы можем представлять только в фантазиях. Фото.

К сожалению, как выглядит черная дыра Gaia BH1 мы можем представлять только в фантазиях

Самой известной черной дырой, пожалуй, является Стрелец A*. Он располагается в самом центре галактики Млечный путь, на расстоянии 26 670 световых лет от нас. В 2022 году моя коллега Любовь Соковикова рассказала, что на новом изображении черной дыры Стрелец А* видны сгустки энергии. Не стоит путать это изображение с самой первой фотографией черной дыры в истории, которая была сделана в 2019 году — на ней изображена тень черной дыры Messier 87.

Самая близкая черная дыра. Сверхмассивная черная дыра Messier 87. Фото.

Сверхмассивная черная дыра Messier 87

Хотите еще больше интересных статей? Подпишитесь на наш Дзен-канал, где также открыты комментарии!

Ни одна, даже самая близкая на данный момент черная дыра не может стать причиной гибели Земли — в космических масштабах они находятся рядом, но не настолько, чтобы как-то на нас воздействовать. К гибели нашей планеты может привести только прямое столкновение с черной дырой, и ученые считают, что в ближайшие миллиарды лет это невозможно. Когда-нибудь Солнце погаснет, но не факт, что она превратится в черную дыру, потому что для этого должны совпасть определенные факторы.

Чем питаются черные дыры и влияет ли это на их внешний вид

Чем питаются черные дыры и влияет ли это на их внешний вид. Когда объект, такой как звезда, попадает в черную дыру, он подвергается процессу, называемому «вырыванию приливов». Это означает, что гравитационное притяжение черной дыры разрывает звезду на атомы, прежде чем они достигнут горизонта событий. Фото.

Когда объект, такой как звезда, попадает в черную дыру, он подвергается процессу, называемому «вырыванию приливов». Это означает, что гравитационное притяжение черной дыры разрывает звезду на атомы, прежде чем они достигнут горизонта событий.

Мы – это то, что мы едим – новое исследование показывает, что данное правило распространяется и на черные дыры. Эти загадочные объекты скрывают множество тайн и собирают вокруг себя множество теорий. Даже то, как они “кушают” до конца неизвестно. Когда сверхмассивные черные дыры в центрах галактик откачивают газ из своего окружения, перегретый газ излучает на длинах волн в диапазоне от рентгеновского излучения до радио. Такой процесс поглощения принято называть аккрецией, пожирая ближайшую материю для наращивания массы – в этом черные дыры мастера. Таким образом недавнее исследование показывает влияние поглощаемых газов на аккреционный диск.

Чем питаются Черные Дыры?

Черные дыры – это объекты во Вселенной, которые славятся своей огромной массой и сильным гравитационным полем. Однако, как и любые другие объекты, они нуждаются в источнике питания. Но что же именно питает черные дыры и как они удовлетворяют свою потребность в энергии?

Чем питаются Черные Дыры? Существуют доказательства того, что в центре каждой галактики находится супермассивная черная дыра. Фото.

Существуют доказательства того, что в центре каждой галактики находится супермассивная черная дыра.

Может быть интересно – обладают ли черные дыры квантовыми свойствами.

Черные дыры могут питаться различными веществами, но наиболее распространенным источником питания для черных дыр является газ и пыль, которые находятся вблизи диска аккреции. Это такая область, где газ и пыль вращаются вокруг черной дыры в результате ее сильного гравитационного поля. Диск аккреции может быть очень горячим и светящимся, именно благодаря ему черная дыра становится видимой для нас.

Когда газ и пыль в диске аккреции приближаются к черной дыре, они начинают быстро вращаться и нагреваться до очень высоких температур. В результате процесса аккреции возникает огромное количество энергии, которая выделяется в виде яркого света и рентгеновского излучения. Черные дыры, питающиеся газом и пылью, называются активными галактическими ядрами и могут иметь очень яркое излучение.

Однако не все черные дыры питаются газом и пылью. Существуют черные дыры, которые находятся в состоянии покоя и не поглощают ничего. Такие черные дыры называются неактивными или голодными. Кроме того, некоторые из них могут питаться звездами, которые приближаются к ним на расстояние, достаточное для того, чтобы их гравитация стала сильнее, чем у звезды. В этом случае звезда начинает разрушаться под воздействием сил гравитации и поглощается.

Как состав газа влияет на свойства черной дыры

Ученые решили рассмотреть вопрос изменения состава газа, начав с простой модели, которая помогла оценить эффекты изменения от чистого водорода к чистому гелию. Для этого команда использовала данные телескопа Event Horizon, сфокусировавшись на двух галактиках в качестве эталонов. Они корректировали параметры модели до тех пор, пока смоделированный поток не стал соответствовать наблюдаемому.

Как состав газа влияет на свойства черной дыры. Черные дыры могут служить «машинами времени» в теории относительности Эйнштейна, где они могут вызывать кривизну пространства-времени, позволяя путешествовать во времени в будущее. Однако, это остается объектом дебатов и не было доказано экспериментально. Фото.

Черные дыры могут служить «машинами времени» в теории относительности Эйнштейна, где они могут вызывать кривизну пространства-времени, позволяя путешествовать во времени в будущее. Однако, это остается объектом дебатов и не было доказано экспериментально.

Читайте также: Космическая музыка – как звучат черные дыры.

Результаты расчетов показали, что с увеличением количества гелия электроны должны иметь более высокую температуру, плазма должна быть менее плотной, а магнитное поле должно быть слабее, чтобы получить тот же поток излучения. Другими словами, изменение состава газа приводит к изменению других физических свойств системы, чтобы сохранить количество излучения. Эти изменения могут повлиять на другие наблюдаемые свойства, такие как поляризация или ориентация излучаемых световых волн.

Поляризация – это процесс, когда электромагнитные волны колеблются в определенной плоскости, в отличие от случайного колебания в разных направлениях. В контексте света, поляризация означает разделение световых волн на определенные направления колебаний, что приводит к изменению их характеристик. Поляризация может происходить как естественным образом (например, при распространении света в воздухе), так и быть искусственно созданной (например, при использовании поляризационных фильтров). Этот эффект имеет много применений в нашей жизни, включая создание трехмерных изображений в кино и телевидении, улучшение качества связи в беспроводных сетях и многие другие технологии.

Варианты аккреции и их влияние на внешний вид

Чтобы исследовать изменения поляризации и других наблюдаемых свойств, ученые использовали результаты этих простых систем для обоснования более сложных моделей движения частиц на высоких скоростях и создания смоделированных изображений. Ученые рассмотрели два крайних случая — один, в котором газ, окружающий сверхмассивную черную дыру, представляет собой чистый водород, и другой, в котором это чистый гелий. Команда также исследовала две предложенные модели того, как происходит аккреция газа — одна, в которой вещество образует аккреционный диск, который постоянно подает вещество в черную дыру, и другая, в которой вещество подается случайными всплесками.

Варианты аккреции и их влияние на внешний вид. Если вы приблизитесь к черной дыре, то гравитационное поле будет настолько сильным, что вы начнете растягиваться вдоль направления, связанного с черной дырой, в явлении, называемом «спагеттификацией». Фото.

Если вы приблизитесь к черной дыре, то гравитационное поле будет настолько сильным, что вы начнете растягиваться вдоль направления, связанного с черной дырой, в явлении, называемом «спагеттификацией».

А чтобы черная дыра не добралась до вас – обязательно подписывайтесь на наш Telegram и Дзен, ведь мы публикуем только актуальные новости из мира науки!

Авторы обнаружили, что состав газа влияет на наблюдаемую нами поляризацию, причем модель, основанная только на гелии, имеет более упорядоченный характер поляризации. Кроме того, изменение как состава газа, так и метода аккреции (стационарный или случайный) приводит к сложным результатам, включая изменение того, где в диске генерируется излучение. Эти результаты показывают, что присутствие гелия может влиять на электромагнитное излучение, испускаемое черной дырой, предполагая, что будущие модели должны рассматривать состав аккрецированного газа как важную переменную.

Ученые обнаружили ранее невиданное событие – убегающую сверхмассивную черную дыру

Ученые обнаружили ранее невиданное событие – убегающую сверхмассивную черную дыру. Сколько еще ученым предстоит обнаружить удивительного в космосе? Фото.

Сколько еще ученым предстоит обнаружить удивительного в космосе?

Одна из самых загадочных тайн космоса – это, несомненно, черные дыры. Это области, где гравитация настолько сильна, что ни одно излучение не может покинуть их. Ученые до сих пор не могут понять, что происходит внутри черных дыр и как они воздействуют на окружающее пространство. Тем не менее даже с ними происходят события, которые делают их еще более загадочными. Недавно было обнаружено явление, которое доказывает это. Взаимодействие трех очень массивных черных дыр привело к ранее неизвестному явлению — сверхмассивная черная дыра движется с огромной скоростью и оставляет за собой след из новообразованных звезд. Это происходит, когда черная дыра движется через межгалактическое пространство и сталкивается с газом, вызывая образование новых звезд впереди. Но самое удивительное в том, что данный объект был обнаружен случайно.

Причудливый мост длиной 200 000 световых лет

Каждый объект в мире имеет свое значение, даже самые мелкие вещи, которые мы можем легко упустить из виду. Это подтвердил астроном Питер ван Доккум во время изучения фотографий, сделанных космическим телескопом «Хаббл». Сначала он не заметил неопознанный след на одном из снимков, думая, что это всего лишь ошибка. Однако, после более тщательного анализа, выяснилось, что это на самом деле космический объект – ряд молодых голубых звезд, простирающихся на протяжении 200 000 световых лет. Этот объект находился на полпути между бегущей черной дырой-гигантом и галактикой, из которой он был изгнан. Считается, что черная дыра сжимает газ, который затем конденсируется и образует звезды. Это уникальное явление во вселенной, которое никогда ранее не наблюдалось в других ее уголках, и подчеркивает важность внимательного изучения даже самых “мелких” деталей в космосе.

Причудливый мост длиной 200 000 световых лет. Пожирающий все на своем пути объект, может дарить жизнь, мир крайне удивителен. Фото.

Пожирающий все на своем пути объект, может дарить жизнь, мир крайне удивителен

Особенность бегущей черной дыры

Межгалактическое пространство скрывает огромный объект, который перемещается с умопомрачительной скоростью. К примеру, всего за четырнадцать минут он способен преодолеть расстояние от Земли до Луны. Этот объект является черной дырой массой более 20 миллионов Солнц и оставил за собой длинный след новых звезд, простирающийся на 200 000 световых лет и превышающий в два раза диаметр Млечного Пути. Ученые полагают, что данное явление произошло в результате столкновения трех массивных черных дыр.

Интересно отметить, что черные дыры обычно уничтожают все объекты, которые попадают в их поле притяжения. Но, как выяснили ученые, существует черная дыра, которая идет как бы против этого шаблона и помогает создавать новые звезды, собирая газ перед собой. Этот феномен является уникальным и ученые до сих пор пытаются понять, как он работает.

Особенность бегущей черной дыры. Среди полной пустоты образовался путь “жизни”. Фото.

Среди полной пустоты образовался путь “жизни”

За черной дырой находится область газа, которая начинает охлаждаться и образовывать новорожденные звезды. Также “проход”, который она образует за собой – светлее, чем галактика, от которой он протягивается, что указывает на то, что след может содержать большое количество новых звезд. Черная дыра находится на конце «коридора», который простирается до родительской галактики, а на его краю можно заметить светящийся узел ионизированного кислорода. Ученые предполагают, что газ может быть нагрет движением черной дыры, либо это может быть излучение от аккреционного диска, который образуется вокруг черной дыры. Точный механизм этого процесса пока остается загадкой.

Этот удивительный объект в космосе является предметом постоянного исследования и вызывает у ученых множество вопросов.

Что заставило черную дыру убегать?

Нелегко заставить такого гиганта бежать, но ученые полагают, что только крупное столкновение черных дыр может вызвать подобное явление. В данном случае две галактики соединились, объединив две сверхмассивные черные дыры в их центрах. Однако внезапное появление третьей черной дыры-чужака запустило цепочку хаотических событий. Одна из черных дыр лишила две другие – импульса и была изгнана из галактики-хозяина. Однако до сих пор неизвестно, кто изгнал кого: возможно, пара черных дыр осталась неизменной, или новая черная дыра-чужак заменила одну из них, находившихся в первоначальном соединении, и вышвырнула ее старого партнера.

Что заставило черную дыру убегать? Страшно представить, какие события происходят при столкновении черных дыр. Фото.

Страшно представить, какие события происходят при столкновении черных дыр

В итоге одиночная черная дыра двинулась в одном направлении, а две другие ушли в противоположном. На другом конце галактики-хозяина находится интересный объект, который, возможно, является также убегающей черной дырой. Это можно подтвердить дополнительными наблюдениями, проводимыми при помощи космического телескопа NASA Джеймс Уэбб и рентгеновской обсерватории Чандра, так как в центре галактики не обнаружено признаков активности черной дыры.

Дальнейшая судьба бегущего гиганта

Космический телескоп, который будет запущен НАСА в честь Нэнси Грейс Роман, предоставит широкий обзор Вселенной. В качестве обзорного телескопа, он сможет обнаружить еще больше редких и удивительных «звездных полос» в других уголках Вселенной. Изучение этого объекта поможет нам лучше понять взаимодействия, происходящие в нашей Вселенной.

А чтобы не пропустить больше новостей из мира науки – присоединяйтесь к нашему сообществу в Telegram или же Дзен.

Как узнать что находится внутри черных дыр? И причем тут гравитационные волны?

Как узнать что находится внутри черных дыр? И причем тут гравитационные волны? Во Вселенной происходи множество космических катастроф, например, столкновение сверхмассивных черных дыр. Фото.

Во Вселенной происходи множество космических катастроф, например, столкновение сверхмассивных черных дыр

Когда Купер – главный герой знаменитого «Интерстеллар», пересекает горизонт событий черной дыры и попадает в четырехмерное пространство, то ̶з̶а̶с̶т̶р̶е̶в̶а̶е̶т̶ ̶в̶ ̶к̶о̶м̶н̶а̶т̶е̶ ̶с̶в̶о̶е̶й̶ ̶д̶о̶ч̶е̶р̶и̶ может видеть любые объекты и исходящие от них «нити» времени. Но что на самом деле происходит внутри этих космических монстров? Общая теории относительности (ОТО) гласит, что за горизонтом событий скрывается сингулярность, а значит пространство и время сжимаются. Формально, сингулярность – это точка, в которую сколлапсировал материал, образующий черную дыру, а известные нам законы физики там попросту не работают. Ученые, однако, не исключают и другие варианты. Стивен Хокинг, например, не исключал, что черные дыры могут быть порталами в другие вселенные. Но как узнать что находится внутри, если ни один человек никогда не сможет там оказаться? Ответ на этот вопрос могут подсказать гравитационные волны и компьютерное моделирование.

Что такое сингулярность и «точка невозврата»?

В 2015 году ученые из лабораторий LARGO и VIRGO сообщили об обнаружении гравитационных волн в результате столкновения двух черных дыр. До этого момента черные дыры считались гипотетическими объектами, а в способность доказать их существование не верил даже Эйнштейн (то же можно сказать и о гравитационных волнах). Однако на дворе 2023 год, а у человечества «в кармане» не только гравитационные волны, но и снимки горизонта событий двух черных дыр.

Напомним, что черные дыры представляют собой объекты в пространстве-времени, сила гравитации которых настолько велика, что вся поглощенная ими материя исчезает навеки. Мы знаем об этом благодаря горизонту событий – светящемуся кольцу этих космических монстров. Когда материя пересекает так называемую точку невозврата, то навсегда становится пленницей черных дыр.

Что такое сингулярность и «точка невозврата»? Внешний круг черной дыры называется горизонтом событий, а в центре космического монстра располагается сингулярность. Фото.

Внешний круг черной дыры называется горизонтом событий, а в центре космического монстра располагается сингулярность.

То, как выглядит горизонт событий мы увидели весной 2019 года, после публикации снимка "Стрельца А* – центрального объекта галактики Messier 87, расположенной на расстоянии 54 миллионов световых лет от Земли. Следующим изображением, опубликованном
в мае 2022 года, стал снимок черной дыры в сердце Млечного Пути.

Освежив в памяти открытия последних лет, не будем забывать о сингулярности – центральной области черной дыры, расположенной за горизонтом событий. Считается, что в этой точке сосредоточена масса черной дыры с бесконечной плотностью, однако что именно там происходит неизвестно.

Черные дыры и компьютерные модели

Но вернемся к гравитационным волнам – «ряби» в пространстве времени, которая распространяется подобно волнам в результате космических катастроф – столкновений нейтронных звезд или черных дыр: чем больше масса и скорость движения объектов, тем больше колебания гравитационных волн.

Обнаружение гравитационных волн в очередной раз подтвердило ОТО Эйнштейна, а за прошедшие с тех пор годы было обнаружено около 100 сливающихся черных дыр. Теперь, благодаря работе команды 14 ученых во главе профессором Колумбийского университета Ламом Хуэем, моделирование космических катастроф прокладывает путь к более глубокому пониманию структуры черных дыр во время столкновений.

Черные дыры и компьютерные модели. Столкновение таких массивных объектов как нейтронные звезды и черные дыры порождает гравитационные волны, сотрясающие пространство-время. Фото.

Столкновение таких массивных объектов как нейтронные звезды и черные дыры порождает гравитационные волны, сотрясающие пространство-время

Подробнее об открытии гравитационных волн мы рассказывали здесь, не пропустите.

В работе, опубликованной в журнале Physical Review Letters, команда описывает усложненный способ моделирования сигнала, излучаемого гравитационными волнами, путем включения в модель нелинейных взаимодействий. Ранее модели гравитационных волн включали только линейные взаимодействия, которые хорошо работают, но не учитывают различные виды поведения наблюдаемых космических объектов. Новое исследование улучшает модели на 10% (а это много).

Это большой шаг в подготовке к следующему этапу обнаружения гравитационных волн и пониманию гравитации и явлений, наблюдаемых в дальних уголках космоса, – пишут авторы научной работы.

Отметим, что нелинейность моделей для описания гравитационных волн можно сравнить с волнами в океане: спокойно поднимающиеся и опускающиеся описаны линейными уравнениями, а крупные и разбивающиеся – нелинейными. Последние демонстрируют движение воды в волне, включая капли воды, что содержатся в воздухе.

Черные дыры и компьютерные модели. Перед вами процесс поглощения звезды черной дырой. Фото.

Перед вами процесс поглощения звезды черной дырой

Новый метод также дает подсказки о том, что происходит внутри черных дыр, описывая гравитацию в экстремальных астрофизических условиях. «В попытках докопаться до истины мы наблюдаем за рябью пространства-времени как детективы. И это – лучший способ узнать как можно больше об их таинственной природе», – отметил один из 14 авторов научной работы.

Читайте также: Настольный детектор гравитационных волн уловил странные, новые сигналы

Моделирование черных дыр

Исследование пришлось как нельзя кстати: в марте обсерватория LIGO вновь приступит к работе после закрытия в 2020 году из-за пандемии COVID-19. Ожидается, что в ближайшие годы сбором данных займутся несколько крупных детекторов гравитационных волн, а наличие улучшенных компьютерных моделей может привести к новым открытиям.

Улучшенные компьютерные модели позволяют оценить пространственно-временную структуру черных дыр и их содержимое, так как «прислушиваются» к звуку, исходящему от столкновения и слияния этих космических монстров. Ожидается, что в будущем эти модели помогут составить карту внутренней структуры черных дыр и того, что происходит с оказавшейся там материей.

Моделирование черных дыр. В модели используются новые методы для анализа волн, испускаемых черными дырами при столкновении. Фото.

В модели используются новые методы для анализа волн, испускаемых черными дырами при столкновении.

Нелейные взаимодействия можно сравнить с встряхиванием коробки и издаваемом в результате звуком, который позволяет узнать о ее содержимом. В данном случае тряска – столкновение двух черных дыр, а звук – издаваемые в процессе гравитационные волны. Результат, как ожидают специалисты, позволит обнаружить еще больше космических катастроф в самых отдаленных уголках Вселенной.

Больше по теме: Что странного в столкновении нескольких черных дыр? И причем тут гравитационные волны?

Дальнейшая работа над улучшением компьютерных моделей – это большой шаг в подготовке к следующему этапу обнаружения гравитационных волн и изучению самой главной (и загадочной) силы природы – гравитации и ее поведения на просторах бесконечной Вселенной. Но компьютерное моделирование – лишь малая часть этой колоссальной работы.

Как объяснить сингулряность?

Пролить свет на тайну содержимого черных дыр может темная энергия – сила, благодаря которой Вселенная расширяется со все возрастающей скоростью (что, на секунду, противоречит ОТО). О том, что ключ к пониманию структуры черных дыр связан с темной энергией, говорят результаты новых исследований, в ходе которых ученые измерили массу черных дыр в гигантской эллиптической галактике.

Звездообразование в таких галактиках как правило останавливается, а «строительного» материала катастрофически не хватает. Это означает, что черным дырам в центре таких галактик нечего поглощать, а значит набирать массу эти объекты не могут, – объясняют специалисты.

Как объяснить сингулряность? В центре черной дыры располагается сингулярность. Верхняя и нижняя точки – горизонт событий, поглощающий все вокруг и не выпускающий материю за пределы черной дыры. Фото.

В центре черной дыры располагается сингулярность. Верхняя и нижняя точки – горизонт событий, поглощающий все вокруг и не выпускающий материю за пределы черной дыры

Как показали результаты сразу двух исследований физиков из Гавайского университета, опубликованных в журнале Astrophysical Journal и Astrophysical Journal Letters, в отдаленных эллиптических галактиках без звездообразования, сверхмассивные черные дыры продолжали расти. Более того, эти таинственные объекты становились все более массивными примерно с той же скоростью, с которой расширялась Вселенная. «Это наводит на мысль о том, что черные дыры могут играть определенную роль в создании темной энергии», – говорится в статье.

Не пропустите: Могут ли гравитационные волны разрешить кризис космологии?

В нашем сегодняшнем понимании центр черной дыры – это точка, в которой известные законы физики не работают из-за чрезмерной силы гравитации. При этом сингулярность математически невозможна.
«Когда физика внутри черной дыры становится странной, ее масса оказывается связанной с расширением всей Вселенной», – сообщают исследователи.

Как объяснить сингулряность? Некоторые физики полагают, что черные дыры являются источником таинственной темной энергии, ответственной, как считается, за расширение Вселенной. Фото.

Некоторые физики полагают, что черные дыры являются источником таинственной темной энергии, ответственной, как считается, за расширение Вселенной

Многие физики также высказывали предположения о том, что вместо сингулярности центр черной дыры может содержать так называемую вакуумную энергию – одну из возможных форм загадочной темной энергии. И все же, утверждать, что физики разгадали как тайну темной энергии и знают что находится внутри черных дыр, нельзя. Однако использование обновленных компьютерных моделей наряду с дальнейшими наблюдениями и сбором данных, позволят ответить на многие фундаментальные вопросы о мире и Вселенной, в котором мы живем.

О том, могут ли черные дыры оказаться порталами для путешествий сквозь пространство и время мы рассказывали в этой статье, не пропустите!

А как вы думаете, что находится внутри черных дыр? Могут ли они быть порталами в другие миры или являются источником таинственной темной энергии? Ответ, как и всегда, ждем в нашем Telegram чате и комментариях к этой статье!

Ученые создали черную дыру в лаборатории и она начала светиться

Ученые создали черную дыру в лаборатории и она начала светиться. Новые исследования показывают, что искусственные черные дыры функционируют так же, как настоящие. Фото.

Новые исследования показывают, что искусственные черные дыры функционируют так же, как настоящие

Среди бесчисленного множества космических объектов, самыми загадочными являются черные дыры – области пространства-времени, сила притяжения которых настолько велика, что даже фотоны света не могут вырваться за пределы их горизонта событий. Считается, что сверхмассивные черные дыры находятся в центрах галактик и Млечный Путь – не исключение. И хотя наши знания о Вселенной и ее обитателях ограничены, ученые продолжают собирать их по крупицам. По мере развития технологий важнейшим научным инструментом стали компьютерные модели – с их помощью исследователи разработали реалистичные модели Вселенной. Более того, ранее в этом году команда физиков из Амстердамского университета смоделировала горизонт событий черной дыры в лаборатории. Может показаться удивительным, однако искусственная черная дыра начала испускать излучение, как и предполагал знаменитый физик-теоретик Стивен Хокинг. Это открытие, вероятно, позволит ученым разработать совершенно новую физическую теорию, сочетающую общую теорию относительности (ОТО) и принципы квантовой механики. Но как?

В 1974 году Стивен Хокинг предположил, что небольшие черные дыры могут испаряться, что в целом является парадоксом, так как покинуть горизонт событий не могут даже фотоны самого света.

Космические монстры

Черные дыры начинают свой жизненный путь со смерти – звезды, чья масса превышает солнечную минимум в три раза, выгорают и взрываются, отбрасывая внешнюю оболочку, после чего сжимаются и коллапсируют в черные дыры. Этот процесс происходит постоянно – новые звезды рождаются, старые – погибают. И чем больше звезда, тем быстрее она сжигает топливо и погибает. Однако происхождение сверхмассивных черных дыр (масса которых превышает солнечную в миллионы и миллиарды раз) до сих пор неизвестно.

Этот процесс настолько удивителен, что современная наука уделяет ему много внимания: небольшие черные дыры, возможно, сформировались в центре молодых галактик в процессе слияния (столкновения). Понимание физики этих объектов является ключом к разгадке фундаментальных законов, управляющих Вселенной. Все потому, что черные дыры представляют собой предел двух наиболее проверенных теорий – ОТО и квантовой механики.

Космические монстры. Вряд ли во Вселенной найдутся объекты, более странные, чем черные дыры. Фото.

Вряд ли во Вселенной найдутся объекты, более странные, чем черные дыры

Напомним, что ОТО Эйнштейна описывает гравитацию как результат деформации пространства-времени массивными объектами, а квантовая теория – устройство мироздания на уровне атомов.

Но несмотря на полученные изображения горизонта событий черной дыры в сердце Млечного Пути и в центре галактики M87 (Messier 87), вопросов у ученых по-прежнему много. Так, британский физик-теоретик Стивен Хокинг десятилетиями изучал эти таинственные объекты и в 1974 году предположил, что прерывание квантовых флуктуаций горизонта событий испускает тип излучения, похожий на тепловое. Проблема заключается в том, что это излучение, вероятно, слишком слабое, чтобы его смогли обнаружить обитатели Земли.

Излучение Хокинга

Чтобы проанализировать свойства излучения Хокинга, исследователи решили создать его аналог в лаборатории (этим грешат многие молодые ученые), что в итоге удалось группе физиков из Амстердамского университета. В ходе исследования физики наблюдали потрясающий результат своей работы – свечение на смоделированном горизонте событий, правда при соблюдении определенных условий.

Отметим, что наблюдаемое искусственное излучение представляет собой частицы, созданные возмущениями квантовых флуктуаций из-за искривления пространства-времени силой гравитации черной дыры.

Предложенная модель в будущем позволит изучить окружающее черные дыры пространство, на которое не влияет экстремальная динамика их образования. «Наша работа может помочь в дальнейшем изучении фундаментальных аспектов квантовой механики, а также гравитации и искривленного пространства-времени в различных средах с конденсированной материей», — пишут авторы нового исследования.

Излучение Хокинга. Перед вами черная дыра поглощающая материю прямо в центре нашей Галактики. Фото.

Перед вами черная дыра поглощающая материю прямо в центре нашей Галактики

Больше по теме: Теория Стивена Хокинга о черных дырах получила подтверждение

Но вот что еще удивительнее – полученные результаты приводят нас прямиком к феномену квантовой запутанности – явлению, при котором две частицы остаются связанными вне зависимости от того, как далеко находятся друг от друга. Как полагают авторы работы, опубликованной в журнале Monthly Notices of the Royal Astronomical Society, запутанность частиц, пересекающих горизонт событий, играет важную роль в генерации излучения Хокинга.

Черная дыра из лаборатории

Чтобы создать горизонт событий в лабораторных условиях, физики смоделировали однорядную цепочку атомов. Возникшее в результате излучение Хокинга — частицы, созданные возмущениями квантовых флуктуаций из-за разрыва пространства-времени черной дырой — проявилось в виде видимого свечения.

Затем команда занялась непосредственным созданием искусственной черной дыры – для чего и была разработана одномерная цепочка атомов, между которой электроны «прыгают» из одного положения в другое. Настроив легкость, с которой могут происходить эти прыжки, исследователи создали своего рода горизонт событий, который мешал волнообразной природе электронов.

Черная дыра из лаборатории. Черная дыра развивается за счет вещества, которое поглощает. Фото.

Черная дыра развивается за счет вещества, которое поглощает

Различная сила связи между атомами имитирует искривление пространства-времени в присутствии черной дыры. По сути, мы использовали «цепочку атомов в одном файле для моделирования горизонта событий черной дыры» чтобы наблюдать излучение Хокинга, – рассказали исследователи, о чем сообщает издание ScienceAlert.

Как отмечают авторы научной работы, разработанная модель соответствовала теоретическим ожиданиям в тот момент, когда часть цепочки атомов выходила за горизонт событий. Это может означать, что квантовая запутанность частиц генерирует излучение Хокинга. Правда, что именно полученные результаты означают для пока не существующей теории квантовой гравитации, неясно. К счастью, труд команды из Амстердамского университета можно использовать в самых разных экспериментальных установках, а значит, дальнейших открытий не миновать.

Черная дыра из лаборатории. Благодаря столкновению двух черных дыр исследователи доказали существование гравитационных волн. Это знаменательное событие произошло в 2017 году и было отмечено Нобелевской премией по физике. Фото.

Благодаря столкновению двух черных дыр исследователи доказали существование гравитационных волн. Это знаменательное событие произошло в 2017 году и было отмечено Нобелевской премией по физике

Как только объект пересекает горизонт событий черной дыры, нам остается лишь гадать что лежит за его пределами. Не исключено, что эти космические монстры могут оказаться порталами в другие вселенные или способом путешествия по нашей собственной. Подробнее о том, как физики-теоретики пришли к такому выводу, мы рассказывали ранее, не пропустите.

Хотите первыми узнавать о последних научных открытиях в области физики и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы всегда быть в курсе происходящего!

Напомним, что одним из главных желаний Стивена Хокинга было создание единой теории квантовой гравитации, которая могла бы объединить две непримиримые теории и, следовательно, могла бы применяться повсеместно и наконец узнать фундаментальные законы Вселенной и нашего существования в ней. О других, не менее интригующих научных теориях о квантовых свойствах черных дыр, можно прочитать здесь.

Обладают ли черные дыры квантовыми свойствами?

Обладают ли черные дыры квантовыми свойствами? Результаты нового исследования показали, что черные дыры обладают квантовыми свойствами. Но что это означает? Фото

Результаты нового исследования показали, что черные дыры обладают квантовыми свойствами. Но что это означает?

Черные дыры – одни из самых загадочных объектов на просторах Вселенной. И хотя физики давно догадывались об их существовании, статус реальных космических обитателей черные дыры получили несколько лет назад. Открытие гравитационных волн в 2017 году и первый снимок черной дыры (2019 год) ознаменовали собой новую эру космических исследований – в самом ближайшем будущем мы узнаем много нового о Вселенной и существующих на ее просторах объектах. Так, недавно в журнале Physical Review Letters вышла статья, авторы которой утверждают что эти космические монстры обладают уникальными и причудливыми квантовыми свойствами. Новое исследование имеет отношение к теории квантовой гравитации – одной из нерешенных загадок современной науки. В основе работы лежит компьютерное моделирование – с его помощью физики обнаружили что черные дыры обладают свойствами, характерными для квантовых частиц. Удивительно, но исследователи полагают, что эти космические монстры могут быть одновременно маленькими и большими, тяжелыми и легкими, мертвыми и живыми.

В общей теории относительности Эйнштейна нет частиц — есть только пространство-время. А в Стандартной модели физики элементарных частиц нет гравитации, есть только частицы. И это – главная проблема современной науки, так как обе теории противоречат друг другу, хотя прекрасно работают по отдельности.

В поисках квантовой гравитации

Согласно квантовой теории наш мир состоит из невидимых частиц, постоянно взаимодействующих между собой и обладающих разными свойствами. Но вот что особенно интересно – законам квантовой механики подчиняются все фундаментальные силы Вселенной, за исключением самой важной из них – гравитации. Увы, но многолетние попытки «вписать» гравитацию в квантовую теорию не увенчались успехом, впрочем, как и создание «теории всего».

Считается, что «теория всего» призвана объяснить устройство Вселенной и законы, по которым в ней все устроено. Физики, однако, до сих пор не знают что именно представляет собой главная сила во Вселенной. Некоторые исследователи полагают, что гравитация обладает квантовым свойствами и состоит из субатомных частиц – так называемых гравитонов, обнаружить которые до сих пор не удалось.

В поисках квантовой гравитации. Гравитон — гипотетическая безмассовая элементарная частица гравитации. Фото

Гравитон — гипотетическая безмассовая элементарная частица гравитации

Вопросы также вызывает квантовая запутанность – явление при котором две субатомные частицы остаются неразрывно связаны вне зависимости от того, как далеко находятся друг от друга. Эту связь Альберт Эйнштейн называл «сверхъестественной» и сомневался в ней до последнего.

Подробнее о том что представляет собой этот удивительный феномен можно прочитать здесь. Уверены, вам понравится!

Так как все вокруг состоит из квантов, способных вести себя и как частица и как волна, существование гравитонов может доказать квантовую природу главной силы во Вселенной. Проблема заключается в том, что гравитация чрезвычайно слаба. Более того, для непосредственного наблюдения едва ощутимого воздействия гравитона на материю, потребуется массивный специальный детектор, способный сам образовать черную дыру (очевидно, о его создании говорить бессмысленно).

В поисках квантовой гравитации. Моделирование показало, что черная дыра демонстрировала признаки квантовой суперпозиции, то есть способность существовать сразу в нескольких состояниях. Фото

Моделирование показало, что черная дыра демонстрировала признаки квантовой суперпозиции, то есть способность существовать сразу в нескольких состояниях

К счастью, поиски гравитона можно продолжать и без супер детектора – в работе, опубликованной в журнале Physical Review Letters, физики рассказали о новой компьютерной модели, способной определить квантовые свойства черных дыр и больше узнать об устройстве Вселенной.

Еще больше интересных статей о новейших астрономических открытиях читайте на нашем канале в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

Квантовая суперпозиция и черные дыры

Физики из университета Квинсленда разработали математическую модель, поместив смоделированную квантовую частицу рядом с гигантской черной дырой. Полученные результаты показали, что черная дыра демонстрирует признаки квантовой суперпозиции – способности частиц существовать сразу в нескольких состояниях одновременно. Так, компьютерная черная дыра оказалась одновременно и массивной и нет (прямо как знаменитый кот Шредингера).

Квантовая суперпозиция и черные дыры. Черные дыры могут обладать квантовыми свойствами, являясь своего рода «котами Шредингера». Фото

Черные дыры могут обладать квантовыми свойствами, являясь своего рода «котами Шредингера»

Это интересно
Нобелевский лауреат по физике 1933 года Эдвин Шредингер своим экспериментов хотел продемонстрировать абсурдность квантовой теории, поскольку она предполагает, что кошка, запертая в ящике, может быть одновременно мертвой. Этот вывод базируется на поведении атомов.

Результаты также подтверждают предположения физика-теоретика Джейкоба Бекенштейна о том, что масса черных дыр может быть только определенного значения в определенный момент времени. Напомним, что субатомные частицы способны существовать в нескольких состояниях одновременно – но лишь до момента взаимодействия с внешним миром. А оно, к слову, является результатом измерения или наблюдения, которое переводит частицу в одно из возможных состояний.

До сих пор никто не вдавался в квантовую природу черных дыр. Но если попытаться выяснить какой является структура сингулярности в центре черной дыры, наши выводы очень важны, — пишут авторы исследования.

Новое открытие также означает, что ткань пространства-времени вокруг сингулярности искривляется до бесконечности. По этой причине законы физики в том виде, в каком мы их знаем, попросту не работают. Выходит подобно коту Шредингера масса черной дыры может быть как огромной, так и нулевой одновременно.

Квантовая суперпозиция и черные дыры. Существование черных дыр удалось доказать несколько лет назад. Фото

Существование черных дыр удалось доказать несколько лет назад

Вам будет интересно: Наша Вселенная – это голограмма? И при чем тут черные дыры?

Необходимо отметить, что свежий взгляд на природу этих таинственных объектов в будущем поможет понять что именно происходит внутри черной дыры. И как бы фантастично не выглядели такие эксперименты, они могут привести к самым неожиданным открытиям. Хорошим примером является основополагающая работа Стивена Хокинга об излучении черных дыр, подробнее можно прочитать здесь.

За горизонтом событий

Так как внимание к фундаментальной роли квантовых частиц в возникновении пространства-времени растет, наши представления о природе Вселенной меняются. Еще совсем недавно считалось что черные дыры не вращаются, а сингулярность – бесконечно плотная точка коллапсирующий материи (это слово используется для описания точки, которая бесконечно мала и бесконечно плотна).

Но так как черные дыры вращаются, современные модели предполагают что их сингулярности представляют собой бесконечно тонкие кольца. И если горизонт событий мы хорошо себе представляем, о сингулярности почти ничего неизвестно (и мы не представляем как она выглядит).

Больше по теме: Как кротовые норы помогают решить информационный парадокс черных дыр?

За горизонтом событий. В 2017 году физики доказали существование гравитационных волн, распространившихся в результате столкновения двух сверхмассивных черных дыр. Фото

В 2017 году физики доказали существование гравитационных волн, распространившихся в результате столкновения двух сверхмассивных черных дыр

Поскольку черные дыры — это абсолютная граница между тем, что мы знаем, и тем, чего не знаем, их истинная природа остается для нас загадкой. По этой причине миру необходимы новые необычные исследования, способные бросить вызов устоявшимся представлениям о Вселенной. В конечном итоге изучение черных дыр может примирить ОТО и квантовую механику, став основой единой «теории всего».

Считается, что в сингулярности ткань пространства-времени изгибается до бесконечности, а законы физики — в том виде, в каком мы их понимаем — нарушаются.

Среди наиболее интересных предположений о содержимом черных дыр можно выделить червоточины – туннели в пространстве-времени, которые могут являться порталами в другие миры и измерения. Подробнее о том, могут ли черные дыры соединять разные Вселенные мы рассказывали ранее, не пропустите!

На новом изображении черной дыры Стрелец А* видны сгустки энергии

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

В самом сердце Млечного Пути обитает сверхмассивная черная дыра, которая время от времени ведет себя странно

В самом сердце нашей галактики прячется космический монстр. Сверхмассивная черная дыра под названием Стрелец А* (Sagittarius A*) находится в центре Млечного Пути, отчего наблюдать ее крайне сложно. Ученым, тем не менее, это удалось – еще в 2019 году они смогли сфотографировать Стрельца А*. Отметим, что речь не идет об обычных фотографиях – на снимке мы видим «тень» черной дыры, так называемый горизонт событий. Чаще всего его описывают как точку невозврата, своего рода космическую тюрьму, вырваться из которой не способны даже кванты самого света. Гравитационная сила Стрельца А* притягивает к себе все объекты поблизости, а их остатки мы видим на снимке. Недавно команда исследователей проекта Event Horizon Telescope (EHT) опубликовала результаты наблюдений за черной дырой в нашей Галактике. Но вот что особенно интересно – объект на новом изображении сильно отличается от того, что был на предыдущих снимках.

Охота на космических монстров

Самый первый снимок черной дыры в галактике Messier 87 (M87) был опубликован в 2019 году и окончательно доказал существование этих космических монстров. Команда ученых из проекта Event Horizon Telescope (EHT) cвязала 11 радиотелескопов на четырех континентах в один огромный радиоинтерферометр, колоссальные возможности которого изменили наше понимание космоса и небесных объектов. Только представьте сколько нового мы узнаем о Вселенной в ближайшие годы!

Недавно команда EHT напомнила о себе опубликовав новый снимок черной дыры в центре нашей Галактики. И это – настоящий прорыв, ведь многие астрономы полагали, что многочисленные попытки запечатлеть этот таинственный объект обречены на провал. Дело в том, что наблюдателю с Земли намного проще разглядывать центр ближайших галактик, чем годами наблюдать за объектом, частично скрытым от телескопов.

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

В 2019 году впервые в истории науки астрономы смогли разглядеть черную дыру в галактике М87 в обрамлении диска падающего на нее вещества

Больше по теме: Опубликована первая в истории настоящая фотография тени черной дыры

Над получением изображения работали более 300 исследователей из 80 научных центров, однако новое изображение выглядит знакомо – объект на снимке похож на изображение черной дыры в сердце галактики М87 (опубликовано в 2019 году той же коллаборацией). Тем не менее между объектами большая разница.

Так, Стрелец А* расположен на расстоянии 53 миллионов световых лет от Земли, а черная дыра из галактики М87 – на 30 миллионов световых лет больше. Полученные данные также указывают на различия между объектами, а их сравнение позволяет больше узнать о свойствах сверхмассивных черных дыр – самых загадочных и экзотических объектов на просторах Вселенной.

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

История наблюдений за черной дырой в галактике Messier 87

Но несмотря на то, что для наблюдателя с Земли они кажутся одинаковыми, в реальности масса M87* составляет 6 миллиардов Солнц, а масса Стрельца А* оценивается в 3,7 ± 1,5 миллиона солнечных масс. Теперь в коллекции космических снимков человечества находятся два «портрета» черных дыр из двух разных галактик.

Любите науку и хотите быть в курсе последних научных открытий? Подписывайтесь на наш канал в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

Снимок сердца Млечного Пути

С первого взгляда новое изображение раскрывает важную информацию о центре нашей Галактики. Благодаря полученным данным ученые подтвердили факт вращения черной дыры и окружающей ее материи. Отметим, что увидеть саму черную дыру на снимке невозможно, так как она абсолютно черная. На ее существование указывает светящийся вокруг дыры газ: темная центральная область окружена яркой структурой, напоминающей кольцо.

Как рассказал журналистам астрофизик из Стэнфордского университета Роджер Блэндфорд (который не принимал участие в исследовании) «Стрелец А*, по сути, голодает, так как вокруг нее вращается не так много материи (по сравнению с черной дырой М87), из-за чего объект выглядит довольно тусклым.

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

Телескоп горизонта событий (англ. Event Horizon Telescope, EHT) — проект по созданию большого массива телескопов в разных уголках Земли, образующих единый интерферометр

Тем не менее материал крутится вокруг Стрельца A* так быстро, что внешний вид объекта может меняться чуть ли не каждую минуту. Чтобы получить снимок Стрельца А*, исследователям пришлось столкнуться с трудностями и потратить немало времени на создание нового изображения. Напомним, что на сбор и проверку информации о черной дыре М87 понадобилось целых два года, а объем полученных данных огромен.

Это интересно: Можно ли доказать существование червоточин? Ученые считают что да

Спокойная и странная черная дыра

Астрономы называют Стрельца А* необычно спокойным объектом. Как правило черные дыры чрезвычайно активны и поглощают огромное количество газа и пыли, которые мы видим на полученных снимках. Однако черная дыра в центре нашей Галактики периодически ведет себя странно, устраивая мимолетное шоу. Так, 11 апреля этого года рентгеновская обсерватория NASA «Чандра» зафиксировала мощную вспышку рентгеновского излучения, происхождение которой на сегодняшний день неизвестно.

Одной из причин может оказаться взаимодействие между материалом аккреционного диска черной дыры и магнитным полем, окружающим этот небесный объект. Под аккреционным диском ученые понимают большую массу притянутого вещества, которое разогревается до огромных температур.

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

Аккреционным диском является газовый диск, который образуется вокруг компактных звездных остатков

Астрономы предполагают, что магнитное поле Стрельца A* действует как барьер, не позволяющий черной дыре поглотить большое количество материала, в то время как магнитная блокировка заставляет газ и пыль скапливаться в определенных областях вокруг космического монстра.

Не пропустите: NASA представила визуализацию черной дыры

Это накопленное напряжение, вероятно, заставляет одну из силовых линий магнитного поля Стрельца А* временно разрываться, высвобождая энергию в космическое пространство и образуя горячий пузырь плазмы. Этот «пузырь» пронизан вертикальными магнитными полями и движется вокруг черной дыры по экваториальной орбите.

На полученном снимке, вероятно, запечатлен сгусток газа, который невероятно быстро обращается вокруг черной дыры – «пузырь» совершает полный оборот всего за 70 минут. Это означает, что он движется со скоростью около 30% скорости света, – пишут авторы научной работы, ознакомиться с текстом которой можно в журнале Astronomy & Astrophysics.

На новом изображении  черной дыры Стрелец А*  видны сгустки энергии

Плазменный шар вокруг черной дыры моя появиться в результате рентгеновских вспышек, причины которых на данный момент неизвестны

А вы знали, что в прошлом году астрономы отметили на карте 25 000 черных дыр? Все подробности здесь, не пропустите!

В завершении отметим, что новые наблюдения подтверждают магнитное происхождение мощных вспышек и дают представление об истинной форме магнитного поля Стрельца A*. Ситуация должна проясниться в самом ближайшем будущем, когда команда EHT получит полное представление о природе этого удивительного объекта. Так что ждем с нетерпением)

Можно ли доказать существование червоточен? Ученые считают что да

Можно ли доказать существование червоточен? Ученые считают что да

Червоточину, или как ее еще принято называть, кротовую нору ученые представляют в виде туннеля, располагающегося между двумя водоворотами света.

Среди множества космических загадок «червоточины» пользуются особой популярностью. С их помощью герои блокбастеров путешествуют по разным вселенным, однако в реальности так называемый мост Эйнштейна-Розена является математическим дополнением общей теории относительности (ОТО). В 1916 году математик Натан Розен и физик Альберт Эйнштейн обратили внимание на решение простейших уравнений ОТО, описывающих изолированные источники гравитационного поля. Ученые предположили, что эта пространственная структура похожа на «мост», соединяющий две одинаковые вселенные (или две разные точки пространства-времени). Впоследствии эти структуры получили название «кротовые норы» (от английского «wormhole» — «червоточина»), однако их существование не доказано. Но несмотря на гипотетический статус, червоточины постоянно присутствуют в уравнениях и помогают астрофизикам описывать устройство Вселенной, движение звезд, планет и других небесных объектов. Но если они действительно существуют, то можно ли их найти? Давайте разбираться!

Гравитационные волны — изменения гравитационного поля, распространяющиеся подобно волнам.

Черные дыры и научные факты

Черные дыры долгое время существовали лишь в уравнениях, а Эйнштейн был уверен в том, что обнаружить их невозможно. Только представьте какой была бы его реакция на ошеломительные успехи современной науки – в 2016 году ученые из лабораторий LIGO и VIRGO зафиксировали гравитационные волны, исходящие от столкновения двух черных дыр (размер которых в 29 и 36 раз больше нашего Солнца).

За проделанную работу физиков наградили Нобелевской премией в 2017 году, а два года спустя изумленная публика рассматривала первый в истории снимок «тени» черной дыры. Подробнее об этом историческом событии и о том, как ученым удалось сфотографировать черную дыру мы рассказывали здесь, не пропустите!

Можно ли доказать существование червоточен? Ученые считают что да

Так выглядит первое фото тени черной дыры под названием Стрелец А. Красота!

Черная дыра представляет собой область пространства-времени, гравитационное притяжение которой настолько велико, что покинуть ее не могут даже кванты самого света.

Сегодня никто не сомневается в существовании черных дыр. Эти объекты реальны и, предположительно, находятся в центре большинства галактик во Вселенной. Правда, чтобы признать реальность и рассмотреть эту научную теорию всерьез нашей цивилизации понадобилось… 50 лет. На смену космическим монстрам пришли червоточины, существование которых сегодня находится под вопросом, так как сами физики не понимают следует ли относиться к червоточинам всерьез.

Больше по теме: Космическая музыка: как звучат черные дыры

Туннель в пространстве-времени

Итак, согласно физической теории, кротовая нора напоминают туннель, который можно использовать для быстрых космических перелетов из одного края Вселенной в другой. Теоретически с их помощью можно не только сократить расстояние между галактиками (с миллионов лет до часов или минут при надлежищих условиях), но даже использовать их в качестве машины времени.

Как, вероятно, знают наши читатели, ОТО Эйнштейна практически каждый год получает подтверждение, а некоторые ученые убеждены в существование червоточин. Но в этой истории есть небольшая проблема: кротовые норы чрезвычайно нестабильны. Это означает, что пространственно-временные туннели не могут долго оставаться открытыми (чтобы что-то или кто-то мог сквозь них пройти).

Можно ли доказать существование червоточен? Ученые считают что да

Кротовые норы соединяют разные участки Вселенной и, возможно, разные вселенные

Ученые называют точки, в которых вы входите и выходите из червоточины, «устьями», а сам туннель — «горлом».

В 1988 году физик Кип Торн из Калифорнийского технологического института предположил, что червоточины можно держать открытыми, используя экзотическую форму энергии – материи с отрицательной массой, которая отталкивает от себя другую (известную нам) материю. По этой причине многие исследователи полагают, что крошечные червоточины с экзотической энергией появились вскоре после Большого взрыва и по мере расширения Вселенной становились все тоньше и длиннее.

В данном случае речь идет об эффекте Казимира, который объясняет взаимное притяжение проводящих незаряженных тел под действием квантовых флуктуаций в вакууме. Именно эта отрицательная энергия действует против гравитации, поддерживая червоточину «на плаву».

Можно ли доказать существование червоточен? Ученые считают что да

Если кротовые норы действительно существуют, то устроены именно таким образом

Вам будет интересно: Может ли рябь пространства-времени указывать на червоточины?

Экзотическая энергия

Учитывая растущий интерес к червоточинам, физик Люк Батчер из Кембриджского университета пришел к выводу, что форма червоточины сама по себе способна генерировать энергию Казимира.

Если горловина червоточины на несколько порядков длиннее, чем ширина ее устья, в ее центре создается экзотическая энергия, благодаря которой червоточина может оставаться открытой достаточно долго для того, чтобы через нее мог проскочить импульс света, – объясняет Батчер.

Можно ли доказать существование червоточен? Ученые считают что да

Упоминания о «червоточинах» можно встретить в научной фантастике. Такие дыры позволяют быстро путешествовать в пространстве и времени.

И если устья червоточины могут существовать в разные моменты времени, то теоретически подходят для путешествий сквозь пространство и время. Но как бы нам не хотелось обнаружить эти объекты и путешествовать в другие миры (или по просторам Вселенной), наука далека от перевода теоретических уравнений в физические объекты.

Подробнее о том, смогут ли люди когда-нибудь путешествовать сквозь червоточины мы рассказывали здесь

Это, однако, не мешает кротовым норам поражать наше воображение. Более того, в некотором смысле эти объекты представляют собой восхитительную форму эскапизма. В отличие от пугающих черных дыр (которые заманивают в ловушку все, что попадает внутрь), червоточины могут позволить нам путешествовать по космическому океану со скоростью, превышающей скорость света.

Кротовые норы и квантовая теория

Связь червоточин с квантовой теорией также интересное явление. Поскольку на микроуровне все вокруг (и мы сами) состоит из атомов и частиц, они могут появиться в пустом пространстве только для того, чтобы исчезнуть через мгновение. При этом целый ряд недавно проведенных экспериментов показал, что квантовую информацию можно передавать из одного места в другое.

С этой точки зрения червоточины похожи на черные дыры, соединенные между собой, – отмечают специалисты.

Можно ли доказать существование червоточен? Ученые считают что да

Черные дыры и червоточины могут быть неразрывно связаны

К счастью, тот факт, что квантовая физика играет важную роль в существовании червоточин вряд ли останется незамеченным. Безусловно, пока никто не видел эти объекты, однако это не означает, что космических туннелей в природе не существует.

В конечном итоге кротовые норы могут помочь ученым понять сокровенные тайны Вселенной. И, что не менее интерсно, доказать существование Мультивселенной. А как вы думаете, узнаем ли мы ответы на эти вопросы в ближайшие 10 лет? Поделиться своими мыслями, как и всегда, можно здесь и в комментариях к этой статье!

Четыре вида Мультивселенной: в какой из них находимся мы?

Четыре вида Мультивселенной: в какой из них находимся мы?

Мультивселенная состоит из множества отдельных и отличных друг от друга вселенных

Что такое мультивселенная? Является ли она научной фантастикой или научным фактом? И если так, то сколько альтернативных вселенных может существовать? Ответы на эти вопросы мы вряд ли когда-нибудь узнаем: наша способность к познанию, увы, ограничена. Но если верить результатам опыта Юнга, то такие элементарные частицы как фотоны могут находиться в двух местах одновременно. Но лишь при условии, что за ними кто-то наблюдает. К тому же, физикам удалось доказать, что свет может быть и волной и частицей одновременной, что по-научному называется корпускулярно-волновым дуализмом. Подобные противоречия и аномалии квантовой механики лежат в основе как развития науки, так и научной фантастики, будь та в прозе или на экране. Так, герои кинокомиксов Марвел, как и герои мультсериала «Рик и Морти, то и дело путешествуют между мирами. Согласитесь, сама идея о существовании других версий себя захватывает дух, а такие именитые ученые как Андрей Линде, Митио Каку и Стивен Хокинг всерьез рассматривают существование Мультиверса.

Удивительно, но многие из лучших научных моделей рождения нашей Вселенной на самом деле зависят от существования множества миров. Эти другие вселенные могут быть как практически идентичными нашей, так и невообразимо отличаться друг от друга, например, из-за других законов физики. Но даже если доказать существование мультивселенных нельзя, сама идея открывает множество интересных и даже ошеломляющих возможностей.

В недрах каждой коллапсирующий черной дыры могут таиться семена новой расширяющейся Вселенной, – сэр Мартин Рис, главный королевский астроном Великобритании.

Тайны мультивселенной

Перед тем как погружаться в теорию Мультиверса, напомним, что любые разговоры и научные исследования в этой области имеют гипотетический характер, а многие физики отказываются всерьез рассматривать существование параллельных миров. Так, еще во времена Эйнштейна тема мультивселенной считалась весьма эксцентричной, а заниматься ей могли некогда продуктивные физики, достигшие преклонного возраста и готовые отойти от серьезных дел. Что же до самого Эйнштейна, то после 1935 года он занимался преимущественно общей теорией относительности (ОТО), электромагнетизмом и поиском единой теории всего.

Четыре вида Мультивселенной: в какой из них находимся мы?

Черные дыры, по мнению Стивена Хокинга, могут являться вратами в параллельные Вселенные

Причина интереса знаменитого физика проста – ОТО великолепна. Но в то же самое время подобна троянскому коню. Всего несколько простых допущений описывают основные характеристики космоса, включая Большой взрыв. Даже теорию инфляции можно подогнать к решению, вписав подобранную космологическую константу в уравнения ранней Вселенной. Эти уравнения, помимо прочего, дают нам убедительную теорию возникновения и смерти Вселенной. Но стоит заглянуть внутрь троянского коня, как мы обнаружим черные дыры, пространственно-временные туннели (червоточины) и даже машины времени. Все это находится за пределами здравого смысла и Эйнштейн отрицал саму возможность их существования и обнаружения.

Черные дыры могут стать проходами в какое угодно время. Если бы нам пришлось прыгнуть в черную дыру, то предполагается, что мы бы появились в другой части Вселенной и в другой временной эпохе… Черные дыры могут быть вратами в Страны чудес. Но есть ли там Алисы и белые кролики? – Карл Саган.

Но, как мы знаем сегодня, черные дыры действительно существуют. Недавно мы рассказывали об ошеломительном открытии – снимке тени черной дыры в самом сердце нашей Галактики. Ранее в 2019 году весь мир в восхищении рассматривал изображение черной дыры в центре Messier 87 – сверхгигантской эллиптической галактике, крупнейшей в созвездии Девы.

Четыре вида Мультивселенной: в какой из них находимся мы?

Черные дыры – это ворота в параллельную Вселенную

Но и это еще не все: в 2017 году международная команда ученых доказала существование гравитационных волн, источником которых было столкновение двух сверхмассивный черных дыр на расстоянии около 1,3 миллиарда световых лет от Земли. Все эти открытия, одно за другим вновь подтвердили постулаты ОТО. К тому же, отклонения и аномалии в расчетах являются неотъемлемой частью теории, которая действительно подразумевает возможность существования Мультиверса. Эти миры могут соединяться между собой пространственно-временными туннелями.

Подробнее о том что такое гравитационные волны, а также когда и как их открыли рассказывал мой коллега Артем Сутягин, к прочтению обязательно.

Доказательства существования Мультивселенной

Так как мы с вами жители XXI века, то знаем об устройстве Вселенной намного больше, чем физики прошлого столетия. Планеты, звезды и галактики, известные на сегодняшний день, охватывают 93 миллиарда световых лет. Современные телескопы, как наземные так и космические, позволили увидеть то, что Эйнштейн и его коллеги считали едва возможным. Более того, развитие квантовой механики, которая с невероятной точностью описывает взаимодействие элементарных частиц, показало, что мультивселенная не такая уж и выдумка, а альтернативные миры могут находиться рядом с нашим, но остаются незамеченными. Даже теория инфляции утверждает, что Вселенная претерпела невероятное сверхсветовое расширение в момент своего рождения, а ее постулаты предполагают наличие мультивселенной. Шарм в эту удивительную историю также вносит весьма спорная теория струн.

Четыре вида Мультивселенной: в какой из них находимся мы?

Наблюдаемая Вселенная в одном изображении

К тому же на протяжении многих лет исследователи предполагали, что альтернативные версии нас самих существуют внутри Мультивселенной. Вот только «другие» мы можем жить в совершенно иной физической реальности, поскольку законы природы не обязательно одинаковы для каждой вселенной. По этой причине шведско-американский космолога и астрофизик Макс Тегмарк из Массачусетского технологического института предложил рассмотреть четыре вида параллельных вселенных.

Интересный факт
Космология охватывает всю вселенную от рождения до смерти с тайнами и интригами на каждом шагу. Некоторые физики считают, что могут существовать разные частицы, разные силы, даже разное количество измерений пространства по сравнению с тем, что мы видим вокруг нас.

Итак, допустим наша Вселенная столкнулась с другой и мы намеренны это доказать. Одним из возможных способов являются следы, которые другие вселенные могли оставить в виде завитков в реликтовом излучении – тепловым излучением, которое осталось после Большого взрыва. Еще одним способом могут выступать гравитационные волны – так называемая рябь в пространстве-времени, которая появилась вскоре после рождения Вселенной.

Гравитационные волны также могут предоставить доказательства в поддержку теории космической инфляции, которая предсказывает, что гравитационные волны, оставшиеся после Большого взрыва, могут привести к появлению крошечных завитков в реликтовом излучении, – полагают некоторые физики.

Четыре вида Мультивселенной: в какой из них находимся мы?

Кадр из весьма странного и безумного фильма «Все везде и сразу». Рекомендую к просмотру

По Тегмарку, который написал на эту тему статью в журнале Scientific American review много лет назад, существует четыре уровня мультивселенной. В работе автор рассматривает теории, включающие параллельные вселенные, которые образуют естественную четырехуровневую иерархию Мультиверса, допускающую все большее разнообразие. Прямо как в фильме «Все везде и сразу,» где в одном из миров у людей вместо пальцев были огромные сосиски.

Ну а чтобы понять, почему некоторые физики считают, что мы живем в Мультивселенной, читайте эту статью. В ней астрофизик Андрей Линде объясняет, какие физические законы свидетельствуют о реальности множества миров.

Четыре вида Мультивселенных

Предположив существование бесконечных вселенных, космолог разделил Мультиверс на четыре вида. Первый предполагает существование бесконечной вселенной, в которой происходят все возможные варианты событий, включающие копию нашей Земли. На втором уровне основные законы физики действуют так же, как в нашей вселенной, а вот фундаментальные константы отличны: например, может существовать четыре пространственных измерения, а не три. Третий уровень представляет собой множество самых разных миров и является самым популярным представлением мультивселенной.

Четыре вида Мультивселенной: в какой из них находимся мы?

Некоторые физики полагают, что обнаружение черных дыр может указать на существование мультивселенной

При этом каждый выбор человека способен привести к расколу во вселенной, который затем приведет нас к бесконечным параллельным реальностям. И, наконец, четвертый уровень демонстрирует мультивселенную, в которой действуют совсем другие законы физики. В статье Тегмарк описывает четыре вида мультивселенных так:

  • Уровень I: Общее предсказание космологической инфляции – это бесконечная вселенная с постоянной Хаббла, реализующей все начальные условия, включая идентичную копию вас на расстоянии около 101029 метров.
  • Уровень II: Во многих моделях инфляция может привести к появлению нескольких мультивселенных уровня I, которые имеют разные физические константы, размеры и содержание частиц.
  • Уровень III: В унитарной квантовой механике другие ветви волновой функции не добавляют ничего качественно нового. Иронично, но именно эти квантовые параллельные вселенные исторически были самыми противоречивыми.
  • Уровень IV: В основе различных фундаментальных уравнений в физике лежат другие математические структуры.

Автор теории также отмечает, что общей чертой всех четырех видов мультивселенных является самая простая и элегантная теория, которая по умолчанию учитывает существование параллельных миров. И несмотря на многочисленные аномалии и собранные воедино теории и гипотезы, сам факт размышлений о мультивселенной дарит нам прекрасную возможность задуматься о природе науки и нашем существовании. И если ученые в какой-то момент смогут обнаружить характерные завитки в реликтовом излучении или же уловить рябь пространства-времени, возникшей после Большого взрыва, наше представление о мире, космосе и Вселенной придется серьезно пересмотреть.

Четыре вида Мультивселенной: в какой из них находимся мы?

Доктор Стрэндж в Мультивселенной безумия. Вы уже посмотрели?

К сожалению (или к счастью, кто его знает), сегодня не существует никаких доказательств существования Мультиверса. Так что мы с вами можем довольствоваться произведениями писателей-фантастов и фильмами, в которых герои открывают для себя бесконечную вереницу миров. Главное – не забывать о научной составляющей мультивселенной, так как на самом базовом уровне наш мир является математической структурой, в которой может присутствовать мыслящий наблюдатель – то есть вы. Полностью ознакомиться с текстом можно здесь.

«Идея об объективном существовании математических форм, лежащая в основе концепции Мультиверса 4-го уровня, относится не столько к области философии, сколько к обычной науке, поскольку она фальсифицируема и приводит к проверяемым предсказаниям. Независимо от способа вычисления числа Пи результат будет один и тот же, потому что он существует до любых вычислений и независимо от них. Это проверяемое предсказание. А где начинаются такие предсказания — там кончается философия и начинается нормальная наука», – полагает Александр Панов, доктор физико-математических наук и ведущий научный сотрудник НИИ ядерной физики им. Скобельцына (НИИЯФ) МГУ

Хотите всегда быть в курсе новостей из мира популярной науки и технологий? Подписывайтесь на наш канал в Telegram, так вы точно не пропустите ничего интересного!

Четыре вида Мультивселенной: в какой из них находимся мы?

Автор четырех видов Мультиверса Макс Тегмарк

Но есть кое-что новенькое. Как показали результаты недавнего исследования, опубликованного в журнале Physical Review Letters, невидимый «зеркальный мир» элементарных частиц может взаимодействовать с нашим только через гравитацию и может оказаться ключом к решению главной загадки современной космологии – проблемы постоянной Хаббла, которая определяет скорость расширения Вселенной на сегодняшний день. Можно даже сказать, что ученые в полной мере не понимают, что именно сегодня происходит с нашей Вселенной.

В конечном итоге авторы научной работы пришли к интересному выводу: возможно существует зеркальная вселенная, очень похожая на нашу, но невидимая для нас, за исключением ее гравитационного воздействия на наш мир. Наука удивительна, согласитесь. Что же до постоянной Хаббла, то узнать больше о главной загадке современной космологии можно здесь.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Центр Млечного Пути – одно из самых труднодоступных мест для астрономических наблюдений.

На протяжении многих лет ученые мечтали заглянуть в сердце Млечного Пути. Удивительно, но их мечта наконец сбылась: с помощью сети обсерваторий проекта «Телескоп горизонта событий» (EHT) астрономы опубликовали первое в истории изображение Стрельца А* – сверхмассивной черной дыры в центре Галактики. Ее масса превышает солнечную в 4 миллиона раз и находится на расстоянии 27 тысяч световых лет от Земли. Но так как черные дыры притягивают к себе все объекты поблизости, увидеть их невозможно (слишком уж они темные). В отличие от светящейся уничтоженной материи, которая кружится над пропастью со скоростью близкой к скорости света. Получить это изображение было «фантастически сложно». К счастью, разработанные алгоритмы будут использоваться в других наблюдениях.

Изображение Стрельца А* – результат работы проекта "Телескоп горизонта событий (EHT), который зафиксировал свет, искривленный гравитацией черной дыры в самом сердце нашей Галактики

Сердце Галактики

Черные дыры представляют собой объекты в пространстве-времени, гравитационное притяжение которых поглощает все, что находится поблизости. Эти таинственные небесные тела притягивают свет и материю, что вращаются вокруг, искривляя пространство и время.

Технически увидеть черную дыру невозможно – ни свет, ни материя не могут вырваться за пределы ее горизонта событий. Это революционное открытие, помимо прочего, доказывает, что в центре нашей Галактики находится один из самых непостижимых объектов во Вселенной.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Черная дыра в центре Млечного Пути располагается в 26 000 световых лет от нашей планеты

Интересный факт
Команда потратила пять лет на анализ данных, полученных в апреле 2017 года. Сеть радиотелескопов Event Horizon telescope (EHT) охватывает территории от Антарктиды до Испании и Чили.

В 2019 году исследователи опубликовали первое изображение черной дыры в галактике Messier 87. Безусловно, для неподготовленного зрителя изображение Стрельца А* похоже на снимок черной дыры M87, но, как утверждает команда EHT, эти объекты сильно отличаются друг от друга.

Лично я доволен тем фактом, что мы наконец доказали существование черной дыры в центре нашей галактики, – рассказал журналистам The Guardian член коллаборации EHT профессор Зири Юнси из Университетского колледжа Лондона.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Вселенная переполнена галактиками и черными дырами. Это – научный факт

Астрофизики полагают, что в центре практически всех галактик во Вселенной, включая Млечный Путь, располагаются черные дыры. Когда свет засасывает в бездну вместе с перегретым газом и пылью, он изгибается и скручивается под действием гравитации.

Кстати, в будущем ученые намерены явить миру первое в истории видео черной дыры и того, как она поглощает все вокруг себя. Подробнее о революционных планах астрономов мы рассказывали в этой статье, не пропустите.

Чем питаются черные дыры

В ходе пресс-конференции 12 мая 2022 года астрономы представили изображение, полученное с помощью EHT. Однако создать хорошее и достоверное изображение Стрельца А* невероятно сложно. В том числе потому, что черная дыра в Млечном Пути ведет себя неспокойно.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

В 2017 году ученые доказали существование гравитационных волн

Несмотря на отсутствие стабильности, изображение Стрельца А* вновь подтвердило предсказания Эйнштейна и его общей теории относительности (ОТО): черная дыра в центре Галактики соответствует размерам, предсказанным уравнениями знаменитого физика. Представить размер Sagittarius A* можно, сравнив ее с орбитой Меркурия вокруг Солнца.

Читайте также: Могут ли гравитационные волны разрешить кризис космологии?

Как правило черные дыры в сердцах галактик поглощают все близлежащие объекты в огромном количестве. Тем более удивительно, что Стрелец А*, питается довольно скромно. По словам исследователей наша черная дыра «сидит на голодной диете» – в ее центр попадает очень мало материала, но именно эта особенность позволила астрономам совершить новаторское открытие.

Большая разница

Первым в истории изображением тени черной дыры в центре галактики Messier 87 мир наслаждается последние три года. М87 находится на расстоянии 53 миллионов световых лет от нашей планеты, являясь домом для, по меньшей мере, 1 триллиона звезд.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Черная дыра М87. Снимок представлен в 2019 году

Более того, черная дыра M87 – одна из крупнейших во Вселенной. Ее масса превышает солнечную в 6,5 миллиардов раз и поглощает огромное количество материи, выбрасывая энергию в космическое пространство. Подробнее о черной дыре в галактике Messier 87, мы рассказывали ранее.

Возвращаясь к Стрельцу А*, необходимо отметить, что полученные данные дарят нам представление о более стандартном состоянии черных дыр: тихом и неподвижном. По мнению астрономов, поведение черной дыры в Млечном Пути для многих галактик является нормой.

Сравнить полученные наблюдения можно с попыткой сфотографировать щенка, который гоняется за собственным хвостом, с помощью камеры с медленной выдержкой, – объясняют исследователи.

Так как Стрелец А* относительно небольшая черная дыра, пыль и газ в ее аккреционном диске вращаются по орбите, создавая движущуюся цель от одного наблюдения к другому. Напомним, что аккреационный диск черной дыры представляет собой большую массу вещества, которое разогревается до огромных температур и вращается вокруг галактического центра.

Это интересно: Что скрывают звезды, вращающиеся вокруг сверхмассивной черной дыры в центре нашей галактики?

Телескоп горизонта событий

Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Event Horizon Telescope работает как единое целое

Event Horizon Telescope – это глобальный радиоинтерферометр со сверхдлинной базой. Свое название EHT получил в честь «горизонта событий» – точки в пространстве, покинуть которую не может даже свет. И если говорить простым языком, то EHT, по сути, образует единый виртуальный телескоп «размером с Землю».

Целью будущих исследований может стать «Единорог» – ближайшая к Земле черная дыра

Все восемь радиотелескопов на разных континентах синхронизируются друг с другом при помощи атомных часов и суперкомпьютеров для обработки данных. Стоимость этого уникального проекта составляет около 60 миллионов долларов, 28 из которых поступили от Национального научного фонда США.

Фотография тени Стрельца А* – это результат технически сложных наблюдений и инновационных вычислительных алгоритмов, – заявила на пресс-конференции Кэтрин Боуман из Калифорнийского технологического института.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Новейшие астрономические инструменты позволяют нам узнать Вселенную

Наблюдения за объектом велись целых пять лет, а полученное изображение Стрельца А* – результат работы более 300 ученых из 80 стран мира. Снимок, представленный на официальной пресс-конференции 12 мая, составлен из нескольких тысяч изображений черной дыры.

Еще больше интересных статей о звездах, галактиках и тайнах Вселенной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте

В конечном итоге ученые надеются, что наблюдение за целым рядом черных дыр, как довольно спокойных, так и турбулентных, может помочь ответить на многочисленные вопросы об эволюции галактик – сегодня ответа на вопрос о том, что появилось раньше – галактика или черная дыра – не существует.

Еще один немаловажный аспект нового открытия – это эмоциональная связь с сердцем родной Галактики. Согласитесь, есть что-то захватывающее в том, что мир наслаждается снимком центра Млечного Пути. Впервые в истории. Результаты команды EHT опубликованы в специальном выпуске научного журнала Astrophysical Journal Letters.

Ученые сфотографировали тень космического монстра в сердце Млечного Пути

Краткая история черной дыры Стрелец А* в одной картинке

Теперь команда EHT работает над расширением сети телескопов и проводит модернизацию, которая в будущем позволит получить еще более потрясающие изображения и даже фильмы о черных дырах. По мнению исследователей, работа над проектом объединяет: язык, континенты и даже галактики не могут стоять на пути великих возможностей человечества. Ведь чтобы добиться революционных открытий, мы должны работать сообща и трудиться для всеобщего блага. Согласны?

Космическая музыка: как звучат черные дыры

Космическая музыка: как звучат черные дыры

В NASA опубликовали «звучание» чёрной дыры в созвездии Персей

Космос – тихое место. Отсутствие кислорода не позволяет звуковым волнам распространяться, так как большая часть космического пространства – это вакуум, в котором нет среды способной передавать звук. И все же многочисленные утверждения о том, что во Вселенной вообще нет звука не совсем верные. На самом деле скопления галактик содержат большое количество газа, который обеспечивает условия для распространения звуковых волн. Недавно исследователи из NASA представили изумленной публике запись, на которой черная дыра в созвездии Персей испускает пугающий звук. Совместно с командой из Массачусетского технологического института, исследователям удалось провести преобразование излучения рентгеновского эха в слышимые звуковые волны.

Сверхмассивная черная дыра в центре скопления галактик Персей, расположенного на расстоянии 250 миллионов световых лет от Земли, излучает волны давления, которые можно преобразовать в звук.

Как звучат черные дыры

Если вы вдруг окажетесь в открытом космическом пространстве, то как гласит слоган фильма «Чужой», ваш крик не услышит никто. Космический вакуум не позволяет звуковым волнам распространяться. Но стоит оказаться недалеко от скоплений галактик, окруженных газопылевыми облаками, кое-что услышать все-таки можно.

Напомним, что согласно Общей теории относительности (ОТО) Эйнштейна, черные дыры – это объекты с гравитации такой силы, что ничто, даже свет, не говоря уже о звуке, не может вырваться наружу. Парадоксально, но именно черные дыры могут быть самыми яркими объектами во Вселенной.

Космическая музыка: как звучат черные дыры

Перед вами черная дыра М87. Снимок получен в 2019 году

Сверхмассивная черная дыра в центре скопления галактик Персей ассоциируется со звуком начиная с 2003 года. Волны давления, испускаемые этим космическим объектом, создают рябь горячего газа в скоплениях галактик. Эту рябь, как оказалось, можно преобразовать в ноты.

Ранее мы рассказывали про странные столкновения нескольких черных дыр и гравитационных волнах.

Недавно астрономам удалось преобразовать данные в звук с помощью рентгеновской обсерватории NASA «Чандра». Звук типичного рентгеновского эха черной дыры, который мы слышим на записи ниже — это нота, расслышать которую человек не способен, поэтому при обработке данных ее пришлось многократно усилить.

По сути, «музыка» черной дыры – это перевод астрономических данных, увеличенный на 57 или 58 октав выше их истинной высоты, – объясняют астрономы.

В ходе необычной и творческой работы звуковые волны были извлечены в радиальных направлениях, то есть наружу от центра сверхмассивной черной дыры. Затем сигналы были повторно синтезированы в диапазоне человеческого слуха.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram, чтобы не пропустить ничего интересного!

Космическая музыка

Но если вас удивляют «звуки космоса», напомним, что черная дыра в созвездии Персей – не единственный объект, который можно послушать. Большая часть космической музыки собрана приборами различных космических аппаратов – от зонда Juno, наблюдающего сигналы плазменных волн, исходящие из ионосферы Юпитера, до обнаружения аппаратом Кассини радиоизлучений Сатурна.

Космическая музыка: как звучат черные дыры

Чтобы услышать космического монстра, ученым пришлось многократно усилить преобразованный звук

Гравитационные волны – еще один пример. Они буквально растягивают и сжимают пространство, а рентгеновский, оптический и инфракрасный свет позволяет превратить рябь пространства-времени в музыкальные произведения. И если добавить к ним аранжировку, представить положение и яркость источников света в Млечном Пути совсем несложно.

А вы знали, что черная дыра под неофициальным названием "Единорог" расположилась всего в 1500 световых годах от Земли? О том, почему во Вселенной существует много маленьких черных дыр можно прочитать здесь.

Более того, композиторы занимаются этим уже почти 70 лет. Музыка, как и космос, постоянно развивается по мере того, как новые технологии стремятся улучшить наши слуховые познания Вселенной.

Космическая музыка: как звучат черные дыры

Столкновение двух черных дыр порождает гравитационные волны

При этом звук – это всего лишь набор волн давления, частоты которых вызывают отклик в нашем мозге. И хотя звук не может распространяться в космическом вакууме, другие виды волн – например, электромагнитные и гравитационные – могут. Именно ими руководствуются исследователи при создании музыкальных космических произведений.

Кстати, ранее мой коллега Рамис Гениев рассказывал о новой посылке для инопланетян с «человеческой» музыкой, рекомендую к прочтению.

Небесные заклинания

В поисках вдохновения астрономы также всматриваются в центр Млечного Пути, который находится далеко от нашей планеты. Переводя изначально цифровые данные (в виде единиц и нулей), полученные космическими телескопами в изображения, ученые создают визуальные снимки, которые в противном случае были бы невидимы для нас.

То же самое происходит и с обработкой звука: звезды и другие небесные объекты преобразуются в отдельные ноты, в то время как протяженные облака газа и пыли создают развивающийся гул.

Звук играет важнейшую роль в нашем понимании окружающего мира и Вселенной и с этим невозможно не согласиться, – полагают ученые.

Космическая музыка: как звучат черные дыры

Обложка альбома Celestial Incantations

Ранее исследователи опубликовали музыкальный альбом под названием «Небесные заклинания» (Celestial Incantations), который включает в себя «звуки» изнутри и за пределами Солнечной системы. Так, можно услышать излучение галактического пульсара и слияние двух черных дыр.

Чириканье черных дыр, первая акустическая запись атмосферы Марса, и звуки Солнечной системы можно здесь.

Космическая музыка: как звучат черные дыры

Теперь у нас есть возможность послушать преобразованные звуки, которые исходят от черной дыры и других космических объектов

Альбом представляет собой совместную работу ученых, музыкантов и художников и призывает задуматься о бесконечно расширяющейся Вселенной и мирах, что ее заполняют. По мнению создателей Celestial Incantations искусство играет важную роль в развитии науки и делает космос для обитателей Земли ближе.

12 мая астрономы объявят о крупнейшем научном открытии

12 мая астрономы объявят о крупнейшем научном открытии

В галактике Млечный Путь насчитывается от 100 до 400 миллиардов звезд

Наблюдения за звездами, планетами и галактиками показали, какой крошечной песчинкой в бесконечном космосе является наша планета. И все же нам есть чем похвастаться: мы изучаем Солнечную систему, доказали существование гравитационных волн и даже насладились первым в истории снимком горизонта событий черной дыры. И тем не менее наша Галактика полна секретов. Например, галактический центр, расположенный на расстоянии около 24 000 световых лет от Земли, не видно в оптическом свете из-за сильного затемнения межзвездной пылью. К счастью, на помощь астрономам пришла команда Event Horizon Telescope (EHT), которая несколько лет назад подарила миру изображение черной дыры (точнее, ее тени). О новом новаторском открытии будет объявлено на конференции 12 марта. Разбираемся чем астрономы могут нас удивить.

Тайна галактического центра

Миллиарды звезд и планет кружатся в танце, обращаясь вокруг центра Млечного Пути. В самом его сердце, как считается, расположилась сверхмассивная черная дыра в 4,3 миллиона раз массивнее Солнца. Стрелец А* (по-научному Sagittarius A* или Sgr A*), вероятно, окружена горячим радиоизлучающим газовым облаком и является объектом исследований около пяти лет.

Чтобы узнать что именно представляет собой Галактический центр, ученым понадобились восемь наземных радиотелескопов, расположенных по всему земному шару. Как говорится в официальном заявлении Национального научного фонда США (NSF), на конференции 12 мая 2022 года команда EHT и исследователи из Европейской Южной обсерватории объявят о новаторском открытии.

12 мая астрономы объявят о крупнейшем научном открытии

Центр Млечного Пути скрывает множество тайн

Национальный научный фонд США совместно с телескопом Event Horizon проведет пресс-конференцию, чтобы объявить о новаторском открытии в Млечном Пути, – говорится в официальном заявлении.

Согласно сообщениям СМИ, исследователи представят миру фотографию галактического центра Млечного Пути. Правда, что именно готовят астрономы доподлинно неизвестно, так что изумленной публике придется немного подождать.

Кстати, а вы знали что из центра Млечного Пути исходит странный, повторяющийся сигнал? Исследователи полагают, что его источником является неизвестный космический объект. Подробнее о новом открытии мы рассказывали здесь.

Как «бьется» сердце Галактики?

Ранее с помощью телескопа горизонта событий (EHT) астрономы изучали сверхмассивного монстра в центре галактики Мессье 87 (M87), изображением которого мы наслаждаемся уже целых три года. По сравнению с M87, Стрелец A* располагается намного ближе к Земле и значительно уступает M87 по размеру. Но почему наблюдать за Стрельцом A* оказалось сложнее, чем за M87?

Дело в том, что в сердце Млечного Пути гораздо больше космического газа и пыли, которые мешают работе радиотелескопов и вызывают вопросы у исследователей. Например о том, каким образом команде EHT удалось преодолеть это препятствие, чтобы предположительно получить еще одно изображение черной дыры (или чего-то более удивительного).

Много лет назад мы думали, что придется построить очень большой космический телескоп, чтобы получить изображение черной дыры. Но заставив радиотелескопы по всему миру работать согласованно как единый инструмент, команда EHT опередила свое время, сообщив об открытии на десять лет раньше, чем полагало большинство ученых, – говорится в заявлении Пола Герца из NASA.

12 мая астрономы объявят о крупнейшем научном открытии

Так выглядит горизонт событий черной дыры М87

Новаторское открытие, как говорят о нем исследователи, стало возможным благодаря изучению черной дыры М87, так как астрономы вели наблюдения и за Стрельцом А*, в конечном итоге обнаружив следы мощных космических катаклизмов, за которыми могут стоять ранее неизвестные явления.

Рентгеновские лучи с легкостью проходят сквозь космическую завесу. Создание подобных астрономических инструментов впервые в истории позволили человечеству заглянуть так далеко во Вселенную.

Новое космическое явление

Центр Млечного Пути – это точка, вокруг которой вращается Галактика. Расположившаяся там сверхмассивная черная дыра поглощает все окружающее ее вещество, которое падает внутрь космического монстра с огромным ускорением. Потоки газа молниеносно несутся навстречу черной дыре, сталкиваются друг с другом и в все больше и больше разогреваются.

Из-за этого космического явления, черная дыра перестает быть черной, так как облако раскаленной плазмы заставляет этот массивный объект сиять, словно тысяча солнц. Стрелец А* извергает в космическое пространство потоки вещества, несмотря на силу притяжения массивного монстра.

12 мая астрономы объявят о крупнейшем научном открытии

Астрономы сканируют космос с помощью мощнейших телескопов

Исследователи отмечают, что в сердце Млечного Пути происходит множество ранее неизвестных процессов.

К тому же деятельность черной дыры оказывает существенное влияние на всю Галактику: мощное излучение, исходящее от Стрельца А*, мешает образованию звезд и, возможно, регулярно уничтожает близлежащие планеты.

Тем не менее Стрелец А* относительно спокойна по сравнению со сверхмассивными черными дырами в других галактиках. Астрономы ищут причины, по которым все происходит именно так, возлагая надежду на космический телескоп Джеймса Уэбба, который в начале июня продемонстрирует новые данные об устройстве Вселенной.

О том, какие открытия ждут человечество благодаря телескопу Джеймса Уэбба, можно прочитать здесь.

Способность нового телескопа позволит обнаружить инфракрасный свет, подарив нам точное представление об области, окружающей черную дыру. Так телескоп Уэбба поможет астрономам рассчитать массу Стрельца A*, исследуя взаимосвязь между черной дырой и окружающей ее материей. Впечатляет, не так ли?

12 мая астрономы объявят о крупнейшем научном открытии

Млечный Путь, по мнению многих исследователей жизнь существует во многих из 300 млн потенциально обитаемых миров.

Как уже упоминалось в начале статьи, пресс-конференция состоится 12 мая в 6:30 вечера (IST) 12 мая, на которой со вступительным словом выступит главный операционный директор NSF Карен Марронджелл. После пресс-конференции ESO также проведет онлайн-мероприятие на той же платформе и проведет интерактивную сессию вопросов и ответов в прямом эфире.

Хотя ученые ранее изучали струю, простирающуюся более чем на 1000 световых лет от центра M87, только в 2019 году им удалось сфотографировать черную дыру родной галактики. В исследовании, опубликованном в журнале Monthly Notices of the Royal Astronomical Society, астрономы представили новую карту центра Млечного Пути.

Посмотреть конференцию можно на официальном сайте ESO и на канале ESO YouTube.

И чтобы ожидание было не в тягость, предлагаем освежить в памяти самую подробную карту расположения черных дыр на просторах Вселенной. Ждем с нетерпением. Как считаете, чем нас удивят астрономы? Ответ как и всегда ждем здесь и в комментариях к этой статье.