Радиоактивный пляж: как на Испанию упали водородные бомбы?

Радиоактивный пляж: как на Испанию упали водородные бомбы? В 1966 году, через два месяца после падения на побережье Испании четырех водородных бомб, в Паломаресе устроили народные купания. Фото.

В 1966 году, через два месяца после падения на побережье Испании четырех водородных бомб, в Паломаресе устроили народные купания

17 января 1966 года над городом Паломарес столкнулись два американских бомбардировщика с ядерным оружием на борту. Катастрофа привела к гибели семерых человек и падению на юго-восточное побережье Испании четырех водородных бомб. И хотя взрыва не произошло, у двух бомб сработали детонаторы, что привело к заражению почвы радиоактивным плутонием-239. Для ликвидации аварии в провинцию Альмерия прибыли сотни солдат США, однако операцию Broken Arrow («Сломанная стрела») едва ли можно назвать успешной – спустя 57 лет земля в Паломаресе по-прежнему радиоактивна, а Испания вновь обращается к США с просьбой вывезти из страны десятки тысяч кубометров загрязненной почвы (в общей сложности речь идет о 50 000 кубометрах зараженной земли). О том, что уровень радиации в регионе по-прежнему высокий, стало известно в 2007 году. Тогда же правительство Испании ограничило доступ к пострадавшей территории, запретив использование земли для сельскохозяйственной деятельности и развития. Но как получилось, что ликвидация ядерной катастрофы длится более полувека? Давайте разбираться!

Водородные бомбы в Паломаресе

С 1936 по 1975 годы Испания находилась под управлением диктаторского режима Франсиско Франко. После столкновения бомбардировщиков в 1966 году Испанское государство (Estado Español) и США старались преуменьшить значение инцидента. Так, всего через два месяца после катастрофы испанские власти устроили массовое купание на пляже Мануэля Фраги, а затем, совместно с правительством США, раздали жителям Паломареса и Вильярикоса (еще одной пострадавшей провинции) сертификаты и компенсации.

Отметим, что позиция США относительно инцидента оправдывалась разгаром Холодной войны, а Франксисткая Испания опасалась ущерба зарождающейся индустрии туризма (впрочем, ничего нового). Для ликвидации аварии на место крушения было направлено около 1600 военнослужащих США, которые вывезли около 1400 тонн загрязненной почвы, отправив их на объект в Южной Каролине для хранения.

Водородные бомбы в Паломаресе. Испанские рабочие смотрят на обломки, разбросанные по склону холм, во время поиска пропавшей водородной бомбы в январе 1966 года. Фото.

Испанские рабочие смотрят на обломки, разбросанные по склону холм, во время поиска пропавшей водородной бомбы в январе 1966 года.

Это интересно: Ядерная энергетика: как утилизировать уран?

Впоследствии правительство Испании опубликовало документы, согласно которым пострадавшие территории полностью обеззаражены, местные жители получили около 900 сертификатов, а американские военные забрали 4810 канистр (по 242 литра каждая), заполненных землей и радиоактивными отходами. Однако высокий уровень радиации в регионе, зафиксированный в 2007 году, доказал, что операция «Сломанная стрела» с задачей не справилась – радиоактивный мусор, захороненный в канавах, стал причиной загрязнения не менее 40 гектаров.

Самое опасное оружие на Земле

О том, что ядерное оружие может уничтожить цивилизацию, сегодня знают все. Для этого участники «Манхэттенского проекта» (проекта США по созданию атомной бомбы) выступили за ядерное разоружение, о чем в 1947 году сообщили на страницах журнала Чикагского университета «Бюллетень ученых атомщиков». Чтобы объяснить широкой общественности необходимость отказа от ядерного оружия, ученые использовали метафорические Часы судного дня, полночь на которых символизирует ядерную катастрофу.

Подробнее о том, что такое Часы судного дня и кто принимает решение о переводе стрелки мы рассказывали здесь, не пропустите!

Самое опасное оружие на Земле. До полуночи осталось всего 90 секунд. Фото.

До полуночи осталось всего 90 секунд

Увы, но осознать последствия применения атомного оружия удалось лишь после бомбардировки японских городов Хиросима и Нагасаки в августе 1945 года, столкновения бомбардировщиков США над Испанией в 1966 году и крупнейшей аварии на Чернобыльской АЭС весной 1986 года. Последствия крупнейшей в мире катастрофы специалисты устраняют до сих пор. Напомним, что в ходе ликвидации аварии погибли десятки тысяч человек, но самым страшным последствием оказалось влияние облучения.

Напомним, что в природе встречаются радионуклиды – элементы, излучающие радиацию. Их воздействие заражает все окружающие объекты. Так, облучение клеток живых организмов лишает их способности к восстановлению и может стать причиной гибели и мутаций в ДНК, что приводит к развитию рака. После аварии на Чернобыльской АЭС в Европе было зафиксировано не менее 10 тысяч случаев рака щитовидной железы (и по прогнозам ожидается еще не менее 50 000 случаев).

Самое опасное оружие на Земле. В первые несколько часов после облучения пациент испытывает общее недомогание, тошноту или рвоту, ощущение сухости во рту, головную боль. Фото.

В первые несколько часов после облучения пациент испытывает общее недомогание, тошноту или рвоту, ощущение сухости во рту, головную боль.

Самое страшное, все же, происходит из-за высоких доз радиации, полученных при контакте с зараженными материалами. В зависимости от вида поражающего излучения, симптомы лучевой болезни могут включать тошноту, потерю веса, ломоту в теле, боль в животе, рвоту и диарею. В острых случаях у пациентов начинают отмирать целые группы клеток, приводя к отказу органов и последующей смерти.

Больше по теме: Лучевая болезнь: все, что нужно знать каждому

Что такое радиоактивные отходы?

Опасность для жизни и здоровья также представляют радиоактивные отходы (РАО, radioactive waste) — ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. Как правило РАО хранятся в специальных местах захоронения – так называемых могильниках, которые надежно изолируют их от контакта с окружающей средой.

Как говорится на сайте «НО РАО», наиболее опасные радионуклиды содержатся в отработавшем ядерном топливе (ОЯТ): тепловыделяющие элементы и сборки, в которые они помещаются, излучают даже сильнее свежего ядерного топлива и продолжают выделять тепло.

Что такое радиоактивные отходы? В группу РАО попадают любые объекты, длительно контактирующие с ионизированным излучением. Как правило это детали работавших с рудой и топливом машин, провода, фильтры и даже спецодежда. Фото.

В группу РАО попадают любые объекты, длительно контактирующие с ионизированным излучением. Как правило это детали работавших с рудой и топливом машин, провода, фильтры и даже спецодежда.

При этом более 95% РАО представляют собой ценный ресурс (с содержанием урана-235 и 238, плутоний и других изотопов, используемых в медицине и научной деятельности) и извлекаются на специализированных предприятиях. Отметим, что Международное агентство по атомной энергии (МАГАТЭ) разделяет РАО на несколько категорий (твердые и жидкие, низкоактивные и высокоактивные). Для каждой категории прописаны собственные требования к обращению.

К низкоактивным относятся такие изотопы как цезий-137 и стронций-190 (с периодом полураспада около 30 лет), которые содержатся в отходах обычных атомных электростанций. И хотя уровень риска для здоровья от низкоактивных отходов не такой высокий, как в результате взрыва бомбы или ядерного реактора на АЭС, неискушенные террористы, готовые смириться с разоблачением и смертью, могли бы использовать ядерные отходы для отравления крупных городов.

Что такое радиоактивные отходы? Существуют несколько основных этапов обработки ядерных отходов. Фото.

Существуют несколько основных этапов обработки ядерных отходов

Двадцать периодов полураспада эквивалентны 600 годам – времени, в течение которого отходы представляют опасность, – отмечают специалисты.

Плутоний-239

Но вернемся к плутонию-239 – чрезвычайно токсичному изотопу, период полураспада которого составляет 24 тысячи лет (!). Открытие изотопа физиками Калифорнийского университета состоялось в 1941 году, во время бомбардировки мишени из чистого урана-238 разогнанными до высоких энергий нейтронами. Появился этот нестабильный изотоп при распаде нептуния-239, а за его открытие в 1951 году была присуждена Нобелевская премия по химии.

В 1942 году ученым удалось получить чистое соединение плутония. Позже стало известно, что этот изотоп существует в природе – его обнаружили в урановых рудах (в частности в рудах, залегах в Конго). Сегодня плутоний активно используется в ядерной промышленности в качестве топлива для питания ядерных реакторов (фактически он входит в состав МОКС–топлива – смеси оксида урана и плутония) и для изготовления ядерного оружия.

Читайте также: Как работают АЭС и что будет, если их отключить?

Плутоний-239. Плутоний — тяжелый хрупкий высокотоксичный радиоактивный металл серебристо-белого цвета. Фото.

Плутоний — тяжелый хрупкий высокотоксичный радиоактивный металл серебристо-белого цвета

Поскольку плутоний испускает альфа-частицы, он наиболее опасен при вдыхании и оседает в легочной ткани, что приводит к рубцеванию легких и раку. Из легких изотоп может попасть в кровоток, а затем в почки. Циркулируя по организму, плутоний-239 концентрируется в костях, печени и селезенке, подвергая органы воздействию альфа-частиц.

Радиоактивный пляж в Испании

О том, что не менее 40 гектаров земли в Паломаресе заражено плутонием-239, сообщает испанская El Pais. Издание отмечает, что проблема заключается не в очистке территории, а в том, куда попадает загрязненная земля. План ликвидации, разработанный в 2010 году, предусматривал уплотнение и фильтрацию 6000 кубометров, а также поиск могильника, поскольку в Испании места для хранения РАО нет.

Радиоактивный пляж в Испании. Один из американских катеров, участвовавших в очистке района от радиоактвиного загрязнения в 1966 году. Фото.

Один из американских катеров, участвовавших в очистке района от радиоактвиного загрязнения в 1966 году.

В 2015 году Испания и США договорились (без каких-либо юридических обязательств), о том, что Испания возьмет на себя очистку, а США заберет радиоактивные отходы. Однако соглашение так и не было разработано, а Паломарес остается испанской «зоной отчуждения». По этой причине МИД Испании обратился к США с официальным запросом об урегулировании ситуации, однако официальный ответ американские власти пока не предоставили.

Хотите всегда быть в курсе новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Яндекс.Дзен – там регулярно выходят статьи, которых нет на сайте!

СМИ также отмечают, что политическая нестабильность – не единственная причина столь продолжительной ядерной саги: в общей сложности операция займет от 12 до 24 месяцев, а ее стоимость оценивается в 640 миллионов евро.

Радиоактивный пляж в Испании. Побережье Паломареса по-прежнему радиоактивно (спустя 57 лет). Фото.

Побережье Паломареса по-прежнему радиоактивно (спустя 57 лет)

Как в августе 2022 года заявил министр администрации президента Феликс Боланьос, исполнительная власть «работает в экономической и дипломатической сферах, чтобы найти решение» проблемы Паломареса.

Отметим также, что на Земле существует немало территорий, небезопасных для жизни из-за радиации. Среди них Маршалловы Острова, Хэнфордский комплекс в США и Фукусима в Японии. Подробнее о каждом из этих мест мы рассказывали в этой статье, рекомендуем к прочтению.

Новые мини-реакторы можно будет строить даже рядом с домами

Новые мини-реакторы можно будет строить даже рядом с домами. Новые модульные реакторы настолько безопасны, что их можно строить среди домов. Фото.

Новые модульные реакторы настолько безопасны, что их можно строить среди домов

Ранее мы рассказывали, что новым шагом в развитии ядерной энергетики являются малые модульные реакторы мощностью до 300 МВт. Они гораздо более безопасные, чем классические АЭС, и при этом более экологичные. Поэтому их рассматривают даже в качестве альтернативы возобновляемым источникам энергии. По мнению ряда экспертов, использование малых реакторов поможет снизить выбросы парниковых газов. Нельзя сказать, что они уже получили широкое распространение, однако их популярность во всем мире растет с каждым годом. Но особенно сильно ситуация может измениться после появления реакторов еще меньшей мощности. На днях комиссия по ядерному регулированию (NRC) в США сертифицировала новый проект усовершенствованного модульного реактора от компании NuScale Power, мощностью которого составляет всего 50 мегаватт. Его уже назвали шагом вперед к будущему экологически чистой и доступной энергии.

Новые мини-реакторы для небольших компаний

Ранее в США уже были одобрены шесть проектов модульных мини-реакторов компании NuScale Power, но это были большие традиционные легководные реакторы большой мощности. Нынешний же проект ориентирован на то, чтобы сделать мини-реакторы еще более доступными. Теперь их смогут использовать для своих нужд даже небольшие компании и коммунальные предприятия. То есть теперь компании смогут сами себя обеспечивать электроэнергией.

Благодаря усовершенствованной конструкции электростанции NuScale ​​VOYGR стали более безопасными. Легководный реактор, который лежит в их основе, даже в случае внештатной ситуации или аварии не причиняет вреда окружающей среде. Поэтому электростанции могут быть развернуты в жилых районах населенных пунктов.

Новые мини-реакторы для небольших компаний. Новые реакторы ориентированы на коммунальные хозяйства и небольшие компании. Фото.

Новые реакторы ориентированы на коммунальные хозяйства и небольшие компании

Напомним, что модульный мини-реактор представляет собой практически готовое решение, которое собирается на строительной площадке из отдельных модулей. Благодаря этому значительно сокращается время на строительство электростанции. Принцип работы у них совсем не такой, как у больших АЭС, так как энергия, выделяемая в результате расщепления атомного ядра преобразуется в тепловую энергию (нагревает воду), и только после этого преобразуется в электрическую энергию.

Мини-реакторы смогут — альтернатива возобновляемым источникам энергии?

Затраты на строительство даже такого маленького реактора мощностью 50 мегаватт значительно выше, чем на установку ветряков или солнечных панелей. Поэтому скептики выражают сомнение относительно конкурентоспособности данного решения. Однако Дайан Хьюз, вице-президент компании NuScale, уверен, что реакторы смогут составить серьезную конкуренцию возобновляемым источникам энергии.

Электростанция NuScale ​​VOYGR является более стабильным источником энергии, так как не зависит ни от Солнца, ни от ветра. Кроме того, не требовательна к обслуживанию. Ядерное топливо в нее загружается гораздо реже, чем в обычные АЭС и расходуется полностью, то есть без отходов. Кроме того, NuScale ​​VOYGR практичнее альтернативных источников энергии. К примеру, коммунальное хозяйство или предприятие не сможет установить в черте города ветряки или необходимое количество солнечных панелей.

Мини-реакторы смогут — альтернатива возобновляемым источникам энергии? Модульные мини-реакторы малой мощности являются альтернативой возобновляемым источникам энергии. Фото.

Модульные мини-реакторы малой мощности являются альтернативой возобновляемым источникам энергии

Мини-реактор же не требует много пространства и, как было сказано выше, может быть установлен в черте города даже среди домов. Кроме того, по словам Дайана Хьюза, в последнее время по ряду причин увеличилась стоимость энергетических проектов, таких как солнечные и ветровые станции, что делает мини-реакторы еще более конкурентоспособными.

Министерство энергетики США также позитивно смотрит на данный проект. По словам правительства, он представляет собой новый экологически чистый источник энергии, который может снабдить страну энергией. Как сообщается в заявлении, это лучшая инновация, которая только начинает “набирать обороты”.

Мини-реакторы смогут — альтернатива возобновляемым источникам энергии? Использование модульных мини-реакторов позволит уменьшить выбросы СО2 в атмосферу. Фото.

Использование модульных мини-реакторов позволит уменьшить выбросы СО2 в атмосферу

Перспектива мини-реакторов

Как сообщает издание Associated Press, компания NuScale уже подписала 19 соглашений в США и за пределами страны о развертывании своей технологии малых реакторов. К примеру, сейчас стартует первая фаза инженерно-проектных работ по сооружению мини-реактора NuScale в Румынии.

Не забудьте подписаться на ЯНДЕКС.ДЗЕН КАНАЛ, где мы подготовили для вас поистине захватывающие и увлекательные материалы.

По словам представителей самой компании, небольшие модульные реакторы больше не являются абстрактной концепцией. Они уже реальны и полностью готовы к развертыванию. Причем в ближайшее время ассортимент электростанций малой мощности будет расширен еще больше. В настоящее время компания NuScale подала еще одону заявку в NRC на утверждение более крупного реактора мощностью 77 мегаватт.

Напоследок напомним, что ученым удалось добиться определенных успехов в области термоядерного синтеза. Правда, до реализации технологии все еще очень далеко, но, если все же удастся ее освоить, это будет колоссальный прорыв в области энергетики, о чем мы рассказывали ранее.

Малый модульный ядерный реактор — революция в ядерной энергетике?

Малый модульный ядерный реактор — революция в ядерной энергетике? За малыми модульными реакторами, возможно, будущее ядерной энергетики. Фото.

За малыми модульными реакторами, возможно, будущее ядерной энергетики

Несмотря на всю эффективность ядерной энергетики, в какой-то момент западные страны начали от нее отказываться из экологических соображений. В качестве альтернативы ей рассматривалась “зеленая энергетика”. Однако с наступлением энергетического кризиса мирный атом вновь стал актуальным. Но классические атомные станции имеют ряд недостатков. Прежде всего, они очень дорогие, а их строительство — это очень сложный и длительный процесс. Кроме того, не стоит забывать о других недостатках, из-за которых в мире стали от них отказываться — это опасность техногенной катастрофы, наличие ядерных отходов, выбросы тепловой энергии в водоемы и т.д. Очевидно, ядерная энергетика нуждается в новых технологиях, которые лишены этих недостатков. И такие технологии уже существуют — это малые модульные ядерные реакторы. Далее подробно рассмотрим что это такое и в чем заключаются их преимущества.

Малый модульный ядерный реактор — в чем его особенности

Малый модульный ядерный реактор (ММР) отличается от больших реакторов АЭС прежде всего размерами. Он в несколько раз меньше. Например, американский ММР NuScale Power представляет собой стальной цилиндр высотой 23 метра и диаметром 5 метров. Как не сложно догадаться, такие реакторы производят меньше энергии — до 300 МВт, но, как правило, еще меньше. Большие традиционные реакторы производят более 700 МВт электроэнергии. Казалось бы, это серьезный недостаток, но не спешите с выводами.

ММР имеют модульную конструкцию. То есть отдельные элементы реактора создаются на заводе, а затем он быстро собирается на объекте. Благодаря этому строительство ММР обходится значительно дешевле, чем строительство большого реактора. Сам процесс занимает несоизмеримо меньше времени.

Малый модульный ядерный реактор — в чем его особенности. Малый модульный реактор в несколько раз меньше обычного большого реактора. Фото.

Малый модульный реактор в несколько раз меньше обычного большого реактора

Кроме того, мини-АЭС с ММР занимает гораздо меньшую площадь, чем классические АЭС. Причем строить их можно на участках, которые не подходят для строительства больших энергоблоков. Кроме того, они менее требовательны к инфраструктуре и могут даже работать автономно.

Также следует отметить, что для ввода обычного реактора в эксплуатацию требуется много лет. Малые же реакторы этого недостатка тоже лишены.

Принцип работы и безопасность малых модульных реакторов

Само слово “реактор” подразумевает, что в ММР происходит ядерная реакция, то есть энергия возникает в результате ядерного деления. Однако получаемая таким способом энергия может преобразовываться в электричество разными способами, в зависимости от модификации реактора. Существуют ММР которые представляют собой уменьшенные копии обычных реакторов АЭС. В других же модификациях могут быть использованы иные технологии.

Принцип работы и безопасность малых модульных реакторов. ММР NuScale Power вырабатывает электричество при помощи паровой турбины. Фото.

ММР NuScale Power вырабатывает электричество при помощи паровой турбины

К примеру, упомянутый выше реактор NuScale Power превращает энергию, выделяемую в результате ядерной реакции, в пар. Последний приводит в движение турбину, которая в свою очередь вырабатывает электричество. Принцип достаточно простой — вода вначале нагревается во внутреннем контуре реактора, после чего тепловая энергия передается во внешний контур, где и возникает пар. При этом реактор автоматически прекращает ядерную реакцию при возникновении любой внештатной ситуации.

Благодаря маленьким размерам и современным технологиям строительства, эти реакторы отличаются несколькими важными преимуществами. Главное из них заключается в безопасности. То есть у них значительно ниже риск повреждения по причине природной катастрофы, к примеру, землетрясения. Кроме того, даже если аварийная ситуация возникнет, риск радиоактивных выбросов тоже минимальный. Это связано с малой мощностью реактора, низким внутренним давлением и другими особенностям конструкции. Таким образом ММР лишен главного недостатка классических АЭС, из-за которых их боятся.

Экономическая выгода от использования ММР

Итак, как мы выяснили, что ММР строятся быстро и сравнительно недорого, при этом они более безопасны, чем большие энергоблоки. Но этим преимущества малых реакторов не ограничиваются. Важным их плюсом, по словам специалистов, является дешевизна обслуживания благодаря тому, что они не требовательны к ядерному топливу.

Экономическая выгода от использования ММР. ММР менее требовательны к ядерному топливу, чем большие реакторы, поэтому реже нуждаются в его замене. Фото.

ММР менее требовательны к ядерному топливу, чем большие реакторы, поэтому реже нуждаются в его замене

На обычных реакторах замена топлива осуществляется каждые один-два года. Малые же реакторы требуют замены топлива раз в 3-7 лет. А некоторые их виды работают без перезагрузки вообще до 30 лет. При этом они почти не производят ядерных отходов, так как практически все топливо вырабатывается. Другим важным плюсом является тот факт, что ММРможно в любой момент безопасно останавливать и затем опять запускать. Обычные атомные станции, как мы рассказывали ранее, боятся обесточивания.

Перспективы малых модульных реакторов

В настоящее время малые модульные реакторы представляют собой только зарождающуюся отрасль в ядерной энергетике. Тем не менее действующие образцы уже позволяют говорить о ее перспективности. К таким образцам можно отнести российскую АЭС “Академик Ломоносов”. Она представляет собой первую в мире плавучую атомную станцию. На ней работают два ММР мощностью 35 МВт.

Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.

В настоящее время в мире разрабатываются 70 коммерческих ММР. Их строительством кроме России занимаются такие страны как США, Китай (разрабатывает самый маленький реактор в мире), Канада, Аргентина и Южная Корея. Очевидно, количество атомных станций с ММР будет быстро увеличиваться, ведь они являются эффективным способом добычи недорогой электроэнергии, при этом не загрязняют окружающую среду и лишены недостатков возобновляемых источников энергии, о которых мы рассказывали ранее.

Как защитить жилье от радиационной катастрофы

Как защитить жилье от радиационной катастрофы

Правильно подготовив жилье к радиационной катастрофе, можно избежать облучения смертельной дозой радиации

Полностью защититься от радиации невозможно, так как она является частью нашей жизни. Космическое излучение, радионуклиды, которые присутствуют в различных материалах и даже в воде, а также ряд веществ в недрах нашей планеты создают естественный радиационный фон. Также определенное излучение имеет сжигаемое топливо, мусорные свалки и т.д. Однако радиация от этих всех источников обычно находится в пределах 0,2 мкЗв/час, или 20 мкР/час, и считается безопасной для человека. Но никто из нас не застрахован от радиационной катастрофы, при которой уровень радиации может превышать норму в десятки, сотни или даже тысячи раз. Как правило, в такой ситуации население эвакуируют, однако не всегда эвакуация происходит своевременно. Поэтому важно знать, как защитить свою квартиру или дом от радиации, чтобы избежать чрезмерного заражения сразу после катастрофы, то есть в самый опасный период.

Ядерная война и другие причины радиационной катастрофы

Будет ли ядерная война между Россией и США? Сейчас на этот вопрос сложно ответить. Остается надеяться на благоразумие политиков, однако, как мы рассказывали ранее, исключать такую вероятность нельзя. Но ядерная война 2022 — далеко не единственная угроза, нависшая над человечеством.

Несмотря на высокий запас прочности атомных станций, они все равно представляют угрозу в случае террористического акта. Кроме того, атомные станции и сами по себе далеко не безопасны. Достаточно вспомнить Чернобыль или Фукусиму.

Как защитить жилье от радиационной катастрофы

Авария на Фукусиме напомнила миру об опасности ядерной энергетики

Также радиация теоретически может прийти оттуда, откуда мы ее вообще не ждем — из космоса. Как мы рассказывали ранее, ученые не исключают вероятность мощной радиационной бури, которая может обрушиться из космоса. Такое уже неоднократно случалось с периодичностью 1 раз в 1000 лет.

Можно ли защитить дом от радиации

Можно ли полностью защитить свое жилье от радиации? На это вряд ли стоит рассчитывать, но зато можно минимизировать воздействие радиации на организм, и таким образом избежать развития лучевой болезни. Больше всего шансов избежать радиационного излучения у жильцов средних этажей. Они удалены от крыши и поверхности земли, на которой скапливаются радиационные осадки, а также оседает радиационная пыль.

В квартире или доме наиболее безопасными являются комнаты, которые не имеют окон и отделены от внешних стен внутренними перегородками. Чем больше барьеров из бетона или кирпича между вами и улицей, тем надежнее защита от радиации. Однако помимо выбора безопасного помещения, все же стоит выполнить некоторые действия, чтобы сделать жилье более безопасным.

Как защитить жилье от радиационной катастрофы

В случае ядерной катастрофы необходимо плотно закрыть окна и двери

В первую очередь необходимо плотно закрыть все окна и двери. Желательно при этом герметизировать щели. К примеру, их можно проклеить скотчем или даже бумагой, как это когда-то делали наши бабушки и дедушки, заклеивая оконные щели на зиму. Также не лишним будет герметизировать вентиляционные отверстия. Решетки можно заклеить скотчем, а большие отверстия забить тряпками.

надо сказать, что от гамма-излучения частично защищает облицовка из стали. Поэтому металлический сайдинг на стенах уменьшит уровень радиации, пронимаемый в помещение. Это можно учесть при выборе материала для отделки фасада дома. А тем, кто хочет создать собственный домашний бункер, стены следует облицевать свинцовыми пластинами.

Как защитить жилье от радиационной катастрофы

Измерить уровень радиации на улице или в помещении можно при помощи дозиметра

Уровень радиации высокий — что делать

Если радиационная катастрофа застала вас на улице, необходимо как можно быстрее зайти внутрь. При этом всю одежду следует снять при входе в помещение и оставить снаружи. Затем надо как можно быстрее принять душ, тщательно вымыв при этом тело и волосы. Если воды нет, следует обтереть тело влажным полотенцем или салфетками.

Самое главное — избегать попадания радиоактивных веществ на открытые участки тела. А еще более опасным является проникновение радиоактивных элементов внутрь. Вот почему важно герметизировать помещение. Это позволит избежать попадания радиоактивной пыли внутрь дыхательных путей. Разумеется, нельзя потреблять воду из крана и открытых источников.

Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.

Пить можно исключительно бутилированную воду, которая находилась внутри помещения. Поэтому подготовиться к катастрофе, хотя бы минимально, следует заранее. Подробно о том, как это сделать мы рассказывали ранее.

Как работают АЭС и что будет, если их отключить?

Как работают АЭС и что будет, если их отключить?

Для многих ядерная энергетика является жизненно важным способом борьбы с изменением климата; другие настаивают на том, что это опасно, нерентабельно и ненужно.

Атомные электростанции (АЭС) вырабатывают электрическую и тепловую энергию, являясь неотъемлемой частью повседневной жизни. Местом рождения первой в мире АЭС стал СССР: строительство началось в 1954 году, а спустя 68 лет в мире насчитывается 437 ядерных реакторов, расположенных в 32 странах. Эти больше котлы бывают разных размеров и форм и могут работать на различных видах топлива, расщепляя атомы для нагрева воды и ее преобразования в пар, который вращает турбину приводя в действие генераторы. Атомные электростанции являются наиболее безопасными для окружающей среды, так как не способствуют выбросам СО2 в атмосферу. Однако называть АЭС полностью безопасными нельзя, о чем человечество узнало в 1986 году после взрыва ядерного реактора на Чернобыльской АЭС. Еще одна катастрофа произошла на японской станции «Фукусима-1» в 2011 году. Но стоит ли ждать чего-то подобного в будущем? Давайте разбираться!

Откуда берется электричество?

Работа атомных электростанций обеспечивает эффективное и надежное электроснабжение по всему миру – ядерная энергетика оказывает намменьшее воздействие на окружающую среду, в отличие от электростанций работающих на ископаемом топливе. Сжигание угля и нефти для выработки тепла приводит к выбросам в атмосферу вредных парниковых газов.

Принцип работы АЭС заключается в выработке тепла при расщеплении атомов и переработке урана. Ядерный реактор также способен постоянно производить энергию и электричество.

Как работают АЭС и что будет, если их отключить?

Принцип работы АЭС строится на выработке тепла в результате ядерного распада

АЭС получают тепловую энергию от расщепления ядер атомов в активной зоне реактора. Основным топливом сегодня является уран – тяжелый радиоактивный химический элемент, который содержится в большинстве горных пород. Деление атомов урана-235, например, приводит к выработке огромного количества тепла.

Чем опасны атомные электростанции?

Будучи безопасными источниками электроэнергии, АЭС, все же, могут угрожать здоровью людей и всех живых существ на Земле. Отходы, образующиеся в результате работы АЭС, остаются радиоактивными от десятков до сотен тысяч лет. При этом решений для их долгосрочного хранения сегодня не существует – большинство ядерных отходов находятся во временных надземных хранилищах. Но так как подобных мест для хранения не хватает, промышленность обращается к другим типам хранилищ (более дорогостоящим и потенциально менее безопасным).

Еще больше интересных статей читайте на нашем канале в Яндекс.Дзен! Там регулярно выходят, которых нет на сайте!

Одной из главных проблем использования АЭС является развитие ядерно-энергетических программ, которые увеличивают вероятность распространения ядерного оружия. Это вновь возвращает нас к ответственности ученых за свои изобретения – в конечном итоге применение ядерного оружия может уничтожить всю жизнь на Земле. К тому же атомные электростанции являются потенциальной мишенью для террористических атак.

Как работают АЭС и что будет, если их отключить?

Крупная радиационная авария максимального 7-го уровня по Международной шкале ядерных событий произошла 12 марта 2011 года в Японии

Весомую роль также играет человеческий фактор и стихийные бедствия. Так, сильное цунами обошло механизмы безопасности нескольких электростанций в 2011 году, став причиной трех аварий на АЭС «Фукусима-1», а последствия взрыва в Чернобыле привели к распространению раковых заболеваний среди населения, проживающего в непосредственной близости от АЭС.

Так как атомные станции должны располагаться рядом с источником воды для охлаждения реакторов, в мире не хватает мест, защищенных от засух, наводнений, ураганов, землетрясений и других потенциальных бедствий, способных привести к аварии. Ситуацию усугубляет увеличение числа экстремальных погодных явлений в результате глобального потепления.

Больше по теме: Как работает АЭС? Опасны ли атомные станции?

Что будет есть отключить АЭС?

Существует ряд правил безопасного отключения АЭС, включая очистку радиоактивно загрязненных систем, конструкций станции и последующего удаления радиоактивного топлива. Окончательное закрытие атомной электростанции включает в себя деактивацию объекта (для снижения остаточной радиоактивности) и демонтаж конструкций.

Последовательный процесс отключения станции необходим для защиты сотрудников АЭС и населения в ближайших городах. Но что будет если отключить АЭС от питания не завершив ее вывод из эксплуатации? Физики отмечают, что отсутствие электроэнергии не является безопасным и может привести к очередной катастрофе.

Как работают АЭС и что будет, если их отключить?

26.04.1986 года произошла самая страшная радиационная катастрофа

Чтобы не допустить перегрева на станции в случае ее обесточения, необходима прокачивать воду исправным насосом (что невозможно без электричества). По этой причине на каждом блоке АЭС существует резервный источник питания, например, несколько дизельных генераторов, которые автоматически запускаются при отсутствии внешнего питания.

Не пропустите: Какой бывает радиация и как от нее защититься?

Специалисты отмечают, что если перебои с подачей электроэнергии на АЭС участятся, аварии вряд ли удастся избежать. Особенно если станция будет работать в таком режиме слишком долго: в этом случае мы станем свидетелями очередной катастрофы.

По словам бывшего научного сотрудника Министерства обороны по ядерной науке и технологиям США Робина Уильяма Граймса, отключение питания работающего реактора может привести к перегреву: «При определенных обстоятельствах перегрев ядерного реактора приведет у тому, что он фактически расплавится».

Напомним, что во время аварии на АЭС «Фукусима-1» работа одного из трех реакторов была успешно остановлена, однако системы резервного питания и охлаждения не сработали, что привело к частичному плавлению всех реакторах станции. Авария на японской АЭС произошла из-за землетрясений и цунами, которые бушевали в стране несколько дней.

Как работают АЭС и что будет, если их отключить?

С загрязнённых территорий было эвакуировано около 164 тысяч человек.

Тем не менее самой страшной аварией по-прежнему является взрыв на Чернобыльской АЭС. Среди причин специалтсты выделяют как наличие неисправностей, так и ошибок в эксплуатации станции. Сам взрыв унес жизни более четырех тысяч человек, а количество пострадавших от радиации окончательно неизвестно.

Сегодня зона отчуждения Чернобыльской АЭС является не пригодной для жизни и останется таковой очень и очень долго. Как ранее рассказывал мой коллега Артем Сутягин, Чернобыль по-прежнему является угрозой.

Лучевая болезнь

Первые описания лучевой болезни появились после бомбардировок японских городов Хиросима и Нагасаки. Врачам пришлось иметь дело с неизвестным заболеванием, симптомы которого «внезапно появлялись у некоторых пациентов без видимых повреждений». Сегодня мы знаем, что первые пациенты страдали отсроченными последствиями радиационного облучения.

Острая лучевая болезнь характеризуется тошнотой, рвотой, диареей, анорексией, головной болью, недомоганием и учащенным сердцебиением (тахикардией). Подробнее о том как протекает эта болезнь и как ее лечить недавно рассказывал мой коллега Андрей Жуков, рекомендую к прочтению

Как работают АЭС и что будет, если их отключить?

Лучевая болезнь – заболевание, возникающее в результате воздействия различных видов ионизирующих излучений

При небольших дозах облучения дискомфорт проходит в течение нескольких часов или дней, однако при мощном облучении радиация проникает в большую часть тела всего за несколько минут, нарушая работу физиологических систем и разрушая клеточные структуры. Последствия радиационного облучения сказываются на делении клеток, что намного опаснее для детей, чем для взрослых.