Нобелевская премия по физике 2022: квантовая запутанность и телепортация

Нобелевскую премию по физике 2022 года вручили за изучение квантовой запутанности и технологий

«Квантовая физика настолько сложная, что ее никто не понимает», – писал нобелевский лауреат Ричард Фейнман. И это не удивительно, так как даже Альберт Эйнштейн относился к ней настороженно, называя феномен квантовой запутанности «сверхъестественным» и «жутким». В вероятностной природе квантовой механики сомневался ирландский физик-теоретик Джон Белл и другие основоположники этой теории. Но несмотря на споры и разногласия, таинственный мир элементарных частиц стал драйвером современной цивилизации: интернет, компьютеры, смартфоны, лазеры, оптоволоконные сети и атомная энергетика существуют благодаря науке о квантах. Только представьте к чему могут привести дальнейшие открытия, которых с каждым годом становится все больше. Так, в 2022 году лауреатами Нобелевской премии по физике стали стразу трое ученых, которые независимо друг от друга проводили эксперименты с запутанными фотонами, сенсорными технологиями и безопасной передаче информации. К слову, не обошлось без квантовой телепортации, но обо всем по-порядку.

Нобелевская премия 2022

Каждый год Шведская королевская академия наук отмечает выдающиеся открытия в разных областях науки, способствуя ее развитию и популяризации в обществе. Всего за несколько лет научно-технический прогресс позволил физикам подтвердить существование черных дыр и гравитационных волн, разработать физические модели климата Земли и даже обнаружить далекие экзопланеты на орбите солнцеподобных звезд – каждое из этих открытий удостоилось награды Нобелевского комитета.

Напомним, что Нобелевскую премию присуждают за открытия в области физиологии и медицины, физики, химии, экономических наук, литературы и миротворческой деятельности. Подробнее о премии и ее основателе мы рассказывали здесь, рекомендуем ознакомиться

Квантовая запутанность возникает в тот момент, когда две или более частицы становятся связанными между собой.

В 2022 году лауреатами Нобелевской премии по физике стали Ален Аспе, Джон Клаузер и Антон Цайлингер. Трое физиков удостоились награды за эксперименты по квантовой запутанности, в основе которых лежат труды таких выдающихся ученых как Нильс Бор, Альберт Эйнштейн и Джон Белл – все они хотели понять природу странного поведения элементарных частиц, способных находиться далеко друг от друга сохраняя между собой связь.

Как отмечают представители Шведской королевской академии наук, в будущем работы Аспе, Клаузера и Цайлингера сыграют важную роль в области квантовых вычислений и безопасной передачи данных, открывая новую главу в истории квантовой механики. Интересно, что исследователи работали независимо друг от друга пытаясь объяснить «жуткий» феномен запутанных элементарных частиц.

Больше по теме: Тайны квантовой механики – что такое квантовая запутанность?

Запутанность и неравенство

Итак, согласно принципам квантовой механики, частицы могут существовать одновременно в двух местах или более, а также не приобретают формальных свойств до тех пор, пока за ними не наблюдают. Но стоит кому-то проследить за положением или «вращением» одной элементарной частицы, как он становится наблюдателем за ее партнером (вне зависимости от расстояния между частицами). Именно это взаимодействие делает квантовую механику похожей на магию. Но как разобраться в причинах этого явления?

Квантовая механика на примере обыкновенных мячей

Представим машину, внутри которой находятся два «запутанных» мяча и мы их не видим. Единственное, что о них известно – это серый цвет и две возможные характеристики – мячи могут быть только белого и черного цвета. Но стоит машине одновременно выбросить их в противоположных направлениях, как наблюдатель ловит мяч и видит что он белый – в эту же секунду второй мяч становится черным.

Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Объяснить это странное явление удалось с помощью «неравенства Белла», согласно которому частицы могут содержать секретную информацию или «скрытые переменные», определяющие их свойства. Если Белл прав, то в системе должны присутствовать скрытые параметры, подтверждая гипотезу локального реализма при которой физические объекты существуют и оказывают влияние на свое ближайшее окружение.

Безумные эксперименты

В 1972 году Джон Клаузер и его покойный коллега Стюарт Фридман решили проверить предположения Белла показав, что частицы, в данном случае фотоны, не содержат скрытой информации. Подход американских физиков заключался в передаче свойств одной частицы к другой, несмотря на большие расстояния между ними.

Если объяснять на мячах, то в приведенном выше сценарии скрытой информации об их свойствах не существует. При этом цвет мяча, попавшего в руки наблюдателя, будет определен случайно. Стоит ли говорить, что в 1970-е годы академическое сообщество не воспринимало всерьез подобные предположения.

Квантовая запутанность может объяснить как устроен мир на уровне атомов

Мой научный руководитель считал, что эксперименты с запутанностью – ужасная трата времени и что я разрушаю свою карьеру, — рассказал Клаузер в интервью The Washington Post.

К счастью, Клаузер не был единственным физиком, заигрывающим с запутанностью – его французский коллега Ален Аспе из Университета Париж-Сакле проводил похожие эксперименты в 1980-х, а Антон Цайлингер из Венского университета в 1990-х изучал запутанные квантовые системы, включающие в себя больше двух частиц. Он предположил, что запутанные состояния являются ключом к созданию новых способов хранения, передачи и обработки информации.

Не пропустите: Что квантовая физика может рассказать о природе реальности?

Квантовая информация

Представители Нобелевского комитета уверены, что в будущем новаторские эксперименты могут привести к созданию квантовой телепортации. Звучит провокационно, так что поясним – речь не идет о телепортации человека из одного места в другое, как, например, в сериале «Звездный Путь». Увы, но такая телепортация – удел научной фантастики.

Как объясняют Аспе, Клаузер и Цайлингер, феномен запутанности квантовых частиц может переносить информацию об объекте из одного места в другое, однако с крупными объектами подобное невозможно – на сегодняшний день ученые могут перемещать только частицы вне зависимости от их массы (из-за принципа организации атомов).

Лауреаты Нобелевской премии по физике 2022 года: французский ученый Ален Аспе, физик из Австрии Антон Цайлингер и американский исследователь Джону Клаузер

Проведенные эксперименты показали, что поведение «запутанных» квантовых частиц полностью противоречит нашим представлениям о том, как должны вести себя независимые отдельные объекты», – указано в заявлении Нобелевского комитета.

Но что насчет квантовых технологий? В 2016 году бывший ученик Цайлингера Цзянь-Вей Пан возглавил китайскую группу исследователей, которая запустила на орбиту спутник Micius с парой фотонов, расстояние между которыми составило более 1000 километров и не изменило их запутанного состояния.

Квантовая телепортация позволяет перемещать квантовое состояние от одной частицы к другой, являясь единственным способом передачи квантовой информации без единой потери.

Квантовая телепортация позволяет перемещать квантовое состояние от одной частицы к другой на расстоянии.

В это трудно поверить, но подобная демонстрация квантовых свойств прокладывает путь к созданию новейших инструментов по передаче информации, тотально защищенной от «взлома». Исследователи надеются, что в будущем все больше устройств покинут лаборатории и покорят реальный мир. В конечном итоге потенциальное применение принципов квантовой механики кажется безграничным. А как вы думаете, какие открытия ожидают нас в будущем? Ответ, как и всегда, ждем здесь и в комментариях к этой статье!

Обнаружены новые элементарные частицы. Почему это важно?

Обнаружены новые элементарные частицы. Неужели новая физика маячит на горизонте?

Мы — часть Вселенной. И это не просто слова. Каждое живое существо на нашей планете состоит из крошечных, невидимых глазу элементарных частиц. То же касается всей видимой материи, которую астрономы наблюдают с помощью телескопов. К счастью, для изучения атомов не нужно отправляться в космическое путешествие – физики прекрасно справляются с этой задачей на Земле. Например, с помощью Большого адронного коллайдера (БАК) ускоряя частицы и дробя материю на атомы. Так, за последние годы мир узнал о существовании самых разных частиц – бозона Хиггса, тетракварков и энионов. Все эти частицы создают реальный мир и могут многое рассказать об устройстве Вселенной, например, о таинственной темной материи, увидеть которую никому не удалось. Недавно исследователи сообщили об открытии «кузена» бозона Хиггса, а также об аномалиях, предположительно вызванных стерильными нейтрино.

Нейтрино – загадочные квантовые частицы, массу которых трудно измерить. Нейтрино удивительны, так как масса, которую они содержат, не учитывается в Стандартной модели элементарных частиц, описывающей субатомный мир.

Мир элементарных частиц

Общая теория относительности (ОТО) с невероятной точностью описывает законы физики как на Земле так и в космосе. Эйнштейн также предсказал существование гравитационных волн и черных дыр, правда, он считал, что их обнаружение невозможно. Но несмотря на открытия последних лет, ОТО не может описать Вселенную целиком.

Масла в огонь подливает квантовая механика – фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Считается, что они пронизывают Вселенную и формируют фундаментальные силы природы.

Интересный факт
Основная проблема построения научной «теории всего» состоит в том, что квантовая механика и общая теория относительности (ОТО) имеют разные области применения. Квантовая механика в основном используется для описания микромира, а общая теория относительности применима к макромиру.

Существует четыре фундаментальных силы или взаимодействия — гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. В совокупности они составляют основу известных природных явлений.

Напомним, что Стандартная модель элементарных частиц описывает электромагнитное, слабое и сильное взаимодействие. Фотоны, например, опосредуют электромагнетизм, а крупные частицы, такие как W и Z-бозоны, опосредуют слабое ядерное взаимодействие, которое управляет ядерным распадом на субатомном уровне.

Но чем больше физики погружаются в изучение микромира, тем больше у них возникает вопросов. И особенно о нейтрино – самых распространенных в природе частицах, увидеть которые нельзя. Большинство нейтрино поступают от Солнца, но некоторые образуются в верхних слоях атмосферы. Словом, современная физика пока не может описать Вселенную целиком.

Больше по теме: Физики доказали существование энионов – третьего царства частиц

Стерильные нейтрино

Итак, сегодня мы знаем о существовании трех типов или разновидностей нейтрино: электронные, мюонные и тау-нейтрино. Многие исследователи полагают, что существует четвертый аромат – стерильные нейтрино.

Свое название эти частицы получили исходя из предположения о том, что они взаимодействуют с другими частицами исключительно за счет гравитации. А вот оставшиеся три разновидности могут объяснить природу темной материи.

Нейтрино входит в число самых распространенных частиц во Вселенной, но поймать их сложно. Так как у этих частиц практически нет массы и электрического заряда. Отследить их можно только по слабому ядерному взаимодействию.

Темная материя – таинственная невидимая и неуловимая субстанция, на долю которой приходится 85% всей материи во Вселенной. В то же самое время одними из возможных частиц, составляющих темную материю, могут быть стерильные нейтрино.

Особое отношение физиков к нейтрино обусловлено их странными свойствами –электронное нейтрино может превратиться в тау- или мюонное нейтрино, и наоборот. Это объясняет интересный квантомеханический эффект под названием нейтринные осцилляции – когда один вид нейтрино превращается в другой, или же становится антинейтрино.

Поисками нейтрино ученые занимаются по всему миру

Ряд аномалий, выявленных еще в 1990-х годах во время экспериментов по изучению нейтрино, подтвердила работа 2002 года, а также исследования последних лет. К тому же новый эксперимент, проведенный глубоко под землей, также зафиксировал наличие аномалий, Так что либо стерильные нейтрино действительно существуют, либо все наши знания физики ошибочны.

Еще больше интересных статей читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте

Осевой бозон Хиггса

Существование бозона Хиггса было предсказано в 1964 году физиком-теоретиком Питером Хиггсом, но обнаружить частицу удалось лишь на Большой адронном коллайдере (БАК) десять лет назад. Считается, что именно бозон Хиггса придает массу всем остальным частицам Стандартной модели и фактически ее подтверждает.

Но недавно физики из Бостонского университета сообщили об обнаружении родственной бозону Хиггса частицы – так называемой осевой бозон Хиггса. К такому выводу исследователи пришли без помощи БАК, что удивительно. Более того, наличие у «частицы Бога» родственника свидетельствует о недостатках современной физической теории, включая неточность Стандартной модели элементарных частиц.

Кстати, обнаружить «кузена» бозона Хиггса удалось в ходе настольного оптического эксперимента, который проводился на обычном столе, – сообщает Live Science.

Большой адронный коллайдер позволил обнаружить частицы, существование которых предсказывали десятилетия назад

Стандартная модель включает два типа частиц: бозоны, к которым относятся глюоны и гравитоны; и фермионы, которые составляют материю и включают в себя нейтрино, электроны и кварки. Однако поиски частиц, способных полностью объяснить природу Вселенной, частенько заводят физиков в тупик. Так что исследователи ожидают новый запуск БАК после почти трехлетнего перерыва и надеются обнаружить больше частиц, что скрываются на просторах Вселенной.

Читайте также: Физики получают все больше доказательств существования новой, неизвестной силы природы

Стандартная модель навсегда

По словам авторов научной работы, опубликованной в журнале Nature, осевой бозон Хиггса создает магнитное поле. А еще эта частица может являться частью темной материи, из которой состоит большая часть Вселенной.

Чтобы обнаружить таинственную частицу ученые использовали редкоземельный трителлурид — квантовое вещество с двухмерной кристаллической структурой. В нем электроны самоорганизуются в волну, в которой плотность заряда периодически увеличивается или уменьшается.

Бозон Хиггса – частица, которая переносит взаимодействие между другими частицами и имеет инертную массу

По словам исследователи, осевой бозон Хиггса возник, когда в квантовом веществе при комнатной температуре имитировали определенный набор волн. Для дальнейшего наблюдение за новой частицей физики использовали рассеивание света.

Изначально мы просто исследовали светорассеивающие свойства этого вещества. Но потом обнаружили аномальные изменения, которые намекали на существование чего-то нового, — объясняют авторы научной работы.

Самое главное в этой истории заключается в том, что появление осевого бозона Хиггса все еще согласуется со Стандартной моделью элементарных частиц. Теоретически, новый бозон Хиггса может объяснить существование темной материи. Правда, для этого нужна новая теория, которая согласовывалась бы с существующими экспериментами и еще не обнаруженными частицами. Так что говорить о новой физике пока рано.

Не пропустите: Физика частиц и новейшие технологии: что нас ждет в ближайшие 10 лет?

Ученые из ЦЕРН стоят на пороге открытия «новой физики»

С другой стороны ряд ранее опубликованных исследований свидетельствует об аномалиях и обнаружении новой силы природы. Подробнее о том, что эта за сила и почему физика стоит на пороге перемен мы рассказывали здесь, рекомендуем к прочтению.

С точки зрения квантовой физики время – всего лишь иллюзия

Время – абстрактная величина или математическое понятие, существующее в нашем представлении реальности.

Мы воспринимаем время как стрелу, указывающую вперед. К тому же, пространство и время неразрывно связаны между с собой. Их дуэт проявляется в движении и развитии материи. Что же до главой силы во Вселенной, то гравитация искусно вплетает материальные объекты в ткань пространства-времени и дуэт превращается в трио. Общая теория относительности (ОТО) Эйнштейна удивительно точно описывает Вселенную. Но квантовая механика нарушает эту гармонию, ведь в мире субатомных частиц все устроено иначе. Две фундаментальные физические теории не согласуются друг с другом, что привело к кризису в современной физике. Но что, если взглянуть на ситуацию радикально по-другому? Существует ли вообще время? И если нет, то как тогда устроена Вселенная?

Что такое время?

Начнем с того, что структуру реальности абсурдно ставить под сомнение. Ведь мы только и делаем, что сверяемся со временем. Отмечаем дни рождения и другие ежегодные праздники, да уж там, вся наша жизнь – это одно большое расписание, график, к которому мы привыкли. Более того, все тонкие фрагменты времени, назовем их так, создают нас и повседневную жизнь повсюду.

Но если предположить, что радикальный пересмотр физической теории – это правильный путь, способный все расставить по своим местам, для начала нужно понять что такое время.

Физики определяют время как последовательность событий из прошлого в настоящее и в будущее. Время также можно рассматривать как четвертое измерение реальности, используемое для описания событий в трехмерном пространстве. Следовательно, для нас время движется вперед, как стрела.

Время во Вселенной может не существовать вовсе

И если Вселенную рассматривать как замкнутую систему, ее энтропия (степень беспорядка) не может уменьшиться. Это означает, что Вселенная не может вернуться в прежнее состояние, следовательно, время не может обернуться вспять. Вроде бы, все верно, но недавно физики нащупали кое-что интересное: на квантовом уровне время течет иначе, а частицы могут путешествовать в прошлое.

Можно ли отследить квантовые частицы без наблюдателя? Ответ ловите в этой статье и не забудьте подписаться на наш канал в Telegram, чтобы всегда оставаться курсе последних научных открытий!

Уравнения, на которых построена физическая наука, гласят, что квантовые системы могут одновременно развиваться по двум противоположным стрелам времени (вперед и назад во времени). А значит, квантовые системы могут двигаться как вперед, так и назад. Подробнее о том, как физики пришли к такому выводу, мы рассказывали ранее.

Движение вперед

Достижения в области физики предполагают, что времени действительно не существует, по крайне мере в нынешнем его понимании. Многие ученые всерьез рассматривают эту возможность. Как выяснили исследователи из Австралийского католического университета, новая физическая теория ставит под сомнение само существование времени в нашей реальности.

На квантовом уроне времени не существует.

Важно понимать, что данный подход обусловлен математическими уравнениями. Если взять трехмерный набор координат, например, (x, y, z) и убрать из него «z», предположив, что ее «больше не существует», решение уравнения покажет другой результат. Подобные решения привели физиков к теории квантовой гравитации.

Мы не так часто об этом задумываемся и все же, как считаете, было ли у Вселенной начало? Исследователи считают, что она существовала всегда, в бесконечном прошлом и лишь недавно превратилась в то, что мы называем Большим взрывом. Продолжение можно прочитать здесь.

Безусловно, пересмотр нашей реальности – это немалый подвиг. Особенно, когда речь заходит о теории петлевой квантовой гравитации или теории струн. И несмотря на то, что обе теории в некотором смысле потерпели неудачу, мечта Альберта Эйнштейна о создании теории всего вдохновляет ученых. Но есть еще кое-что интересное: теория петлевой квантовой гравитации допускает отсутствие времени как фундаментального понятия реальности.

Теория квантовой гравитации

Знаменитый мысленный эксперимент Эдвина Шредингера с кошкой и коробкой, внутри которой находится радиоактивное вещество – это парадокс. Если мы откроем коробку, то кошка умрет из-за распада вещества. Но пока коробка закрыта и мы не видим кошку, она находится в квантовой суперпозиции, а значит и жива и мертва одновременно.

Для нас время может быть всего лишь иллюзией

Квантовая механика — это область исследований, которая рассматривает, как частицы взаимодействуют между собой, находясь в суперпозиции. Это также означает, что частица может находиться в двух или даже во «всех» возможных местах одновременно. Конечно, путь к прогрессу тернист, однако ученые не были готовы к тому, насколько странной становится квантовая механика.

Загвоздка в том, что квантовая суперпозиция противоречит ОТО, которая была интегрирована в стандартную модель физики элементарных частиц с тех самых пор, как Эйнштейн впервые сформулировал ее в начале 1900-х годов.

Согласно ОТО, существующие физические объекты ведут себя ответ на силу гравитации. Время течет по—разному в зависимости от того, где и как вы путешествуете в пространстве и является одним из ключевых законов Вселенной в рамках стандартной модели.

Но несмотря на популярную тенденцию подвергать сомнению природу времени, его физическая «реальность» не вызывает сомнений. Время является неотъемлемой частью Вселенной, а граница между событиями, которые были измерены, не определяет их исход.

Мы воспринимаем время как социальный конструкт

Согласно копенгагенской интерпретации квантовой механики, квантовый мир существует так же как и реальный мир. Это разделение показывает нам что происходит в природе, когда ранее неопределенные вещи становятся определенными. Выходит, время может быть фундаментальным. Но может и нет. То же самое происходит с воспринимаемой нами стрелой времени.

Больше по теме: Что такое многомировая интерпретация квантовой механики?

Новая эра физики

Но если пойти еще дальше и предположить, что время – единственное, что удерживало человечество с самого зарождения цивилизации, будет уничтожено, то что останется Согласно классической физике, на выходе мы получим «причинно-следственную связь», то есть идею, согласно которой одно событие влечет за собой другое.

Это понятие не поддается никаким абсолютным понятиям и существует абстрактно, – полагают исследователи.

В попытках связать математические уравнения с реальностью, ученые предполагают, что если времени не существует, то оно не оказывает прямого влияния на нашу жизнь, даже если продвигает физику в новую эру. Дело в том, что мы воспринимаем время как социальный конструкт, который является для нас реальностью, а измеряем мы его просто посмотрев на часы.

И даже если время на самом деле не существует, наша жизнь будет идти своим чередом.

О том, как продвигаются исследования в этой области, можно узнать в одной из предыдущих статей, рекомендуем к прочтению.

В конечном итоге это довольно удобно, так как человеческий мозг с трудом справляется с такими понятиями, как бесконечность и ткань пространства-времени. Но так как взаимодействие элементарных частиц между собой вызывает массу вопросов, а ответы на них нам пока неизвестны, физики и математики над этим работают.